Research

A full list of my published work can be found on my Google Scholar.

01
NeurIPS 2024
Discovering Preference Optimization Algorithms with and for Large Language Models

C. Lu, S. Holt, C. Fanconi, A. J. Chan, J. Foerster, M. van der Schaar, & R. T. Lange

02
ICML 2024
Dense Reward for Free in Reinforcement Learning from Human Feedback

A. J. Chan, H. Sun, S. Holt, & M. van der Schaar

03
ICLR 2024
How to Catch an AI Liar: Lie Detection in Black-Box LLMs by Asking Unrelated Questions

L. Pacchiardi, A. J. Chan, S. Mindermann, I. Moscovitz, A. Pan, Y. Gal, O. Evans, & J. M. Brauner

04
NeurIPS Workshop 2023
Optimising Human-AI Collaboration by Finding Convincing Explanations

A. J. Chan, A. Huyuk, & M. van der Schaar

06
NeurIPS Workshop 2022
Practical Approaches for Fair Learning with Multitype and Multivariate Sensitive Attributes

T. Liu, A. J. Chan, B. van Breugel, & M. van der Schaar

09
NeurIPS D&B 2021
The Medkit-learn(ing) Environment: Medical Decision Modelling through Simulation

A. J. Chan, I. Bica, A. Huyuk, D. Jarrett, & M. van der Schaar

10
11
ICLR 2021
Generative Time-series Modeling with Fourier Flows

A. M. Alaa, A. J. Chan, & M. van der Schaar

12
ICML 2020
Unlabelled Data Improves Bayesian Uncertainty Calibration under Covariate Shift

A. J. Chan, A. M. Alaa, Z. Qian, & M. van der Schaar

13
MPhil Thesis 2020
Interpretable Policy Learning

A. J. Chan & M. van der Schaar

14
BSc Thesis 2019
Probabilistic Deep Learning

A. J. Chan & R. Silva