
Discovering Preference Optimization Algorithms
with and for Large Language Models

Chris Lu∗

Sakana AI and FLAIR
chrislu@sakana.ai

Samuel Holt∗
University of Cambridge

sih31@cam.ac.uk

Claudio Fanconi∗
University of Cambridge

caf83@cam.ac.uk

Alex J. Chan†

University of Cambridge
ajc340@cam.ac.uk

Jakob Foerster‡
FLAIR, University of Oxford
jakob.foerster@eng.ox.ac.uk

Mihaela van der Schaar‡
University of Cambridge

mv472@cam.ac.uk

Robert Tjarko Lange‡
Sakana AI

robert@sakana.ai

Abstract

Offline preference optimization is a key method for enhancing and controlling the
quality of Large Language Model (LLM) outputs. Typically, preference optimiza-
tion is approached as an offline supervised learning task using manually crafted
convex loss functions. While these methods are based on theoretical insights,
they are inherently constrained by human creativity, so the large search space of
possible loss functions remains under-explored. We address this by performing
LLM-driven objective discovery to automatically discover new state-of-the-art pref-
erence optimization algorithms without (expert) human intervention. Specifically,
we iteratively prompt an LLM to propose and implement new preference opti-
mization loss functions based on previously evaluated performance metrics. This
process leads to the discovery of previously unknown and performant preference
optimization algorithms. The best performing of these we call Discovered Prefer-
ence Optimization (DiscoPOP)1, a novel algorithm that adaptively blends logistic
and exponential losses. Experiments demonstrate the state-of-the-art performance
of DiscoPOP and its successful transfer to held-out tasks.

1 Introduction

Training Large Language Models (LLMs) usually involves starting with a model pre-trained on large
text corpora and then fine-tuning it to match human preferences. Pre-trained, and even instruction
fine-tuned LLMs, can generate harmful, dangerous, and unethical completions [Carlini et al., 2021,
Gehman et al., 2020]. To mitigate this and align an LLM with human values, we use human
preference alignment through preference-ranked completion data. This approach has become an
industry standard, popularized by reinforcement learning with human feedback (RLHF) [Christiano
et al., 2017, RLHF], and more recently, by offline preference optimization algorithms like direct
preference optimization [Rafailov et al., 2023, DPO] and sequence likelihood calibration [Zhao

∗Equal Contribution.
†Work partially done at Spotify.
‡Equal Advising.
1Code: https://github.com/luchris429/DiscoPOP.

Preprint. Under review.

ar
X

iv
:2

40
6.

08
41

4v
2

 [
cs

.L
G

]
 1

 S
ep

 2
02

4

Foundation Model
Proposal

Extend/Update
Context & Fitness

Inner Loop
Optimization Run

CODE-LEVEL JSON FOUNDATION MODEL PROPOSAL:
{"thought": "Based on the previous outputs,...",
"name": "cross_entropy_loss",
"code": "def loss_fn(

logits: torch.FloatTensor,
targets: torch.FloatTensor
) -> torch.FloatTensor:
loss = F.cross_entropy(logits, targets)

return loss"}

SYSTEM PROMPT: You are a machine learning researcher who is
testing out different loss functions. <PROBLEM DESCRIPTION>.
When you respond, output a JSON where the first key
("thought") corresponds to your thought process when designing
the next function. The second key ("name") corresponds to the
name of your next function.The last key ("code") corresponds
to the exact python code that you would like to try. Here is
an example: {<EXAMPLE JSON FORMAT>}
<QUERY>: Propose the next one to evaluate. ⇒ Add evals & perf.

INNER LOOP EVALUATION OF PROPOSED OBJECTIVE:

LLM-Driven Discovery Discovered Policy
Optimization (DiscoPOP)

⇒ Extract validation metric
to optimize in outer loop

Offline RLHF
Training

59 60 61 62 63 64 65 66
Win Rate - LC (%)

SLiC

AQL

KTO

DPO

PADLL

AQFL

LRML - DiscoPOP

59.67

60.94

62.76

63.34

64.14

64.41

65.18

Held Out Alpaca Eval Performance

Model Type
Discovered
Baselines

Figure 1: Left. Conceptual illustration of LLM-driven discovery of objective functions. We prompt an LLM
to output new code-level implementations of offline preference optimization losses E(yw,yl,x)∼D [f (βρ)] as
a function of the policy (πθ) and reference model’s (πref) likelihoods of the chosen (yw) and rejected (yl)
completions. Afterwards, we run an inner loop training procedure and evaluate the resulting model on MT-Bench.
The corresponding performance is fed back to the language model, and we query it for the next candidate. Right.
Performance of discovered objective functions on Alpaca Eval.

et al., 2023, SLiC], which cast the problem as a supervised learning objective. Many algorithms
have been proposed in the literature for offline preference optimization, and it remains an open
question which one performs best across tasks. While a strictly dominant algorithm may not exist,
some algorithms likely exhibit generally improved performance. To date, all existing state-of-the-
art preference optimization algorithms [Rafailov et al., 2023, Azar et al., 2023, Zhao et al., 2023]
have been developed by human experts. Despite their advancements, these solutions are inherently
constrained by human limitations, including creativity, ingenuity, and expert knowledge.

In this work, we aim to address these limitations by performing LLM-driven discovery to automati-
cally generate new state-of-the-art preference optimization algorithms without continual expert human
intervention in the development process. While previous works [Ma et al., 2023, Yu et al., 2023]
have used LLMs to design environment-specific RL reward functions, we discover general-purpose
objective functions which can be used across various preference optimization tasks. More specifically,
we iteratively prompt an LLM to propose new preference optimization loss functions and evaluate
them, with the previously proposed loss functions and their task performance metric (in our case,
MT-Bench scores [Zheng et al., 2024]) as in-context examples. After performing this automatic
discovery process, we catalogue high-performing loss functions and introduce a particularly strong
one we call Discovered Preference Optimization (DiscoPOP), a new algorithm. To ensure robustness
beyond MT-Bench, we validate DiscoPOP using AlapacaEval 2.0 [Dubois et al., 2024], showing an
improvement in win rates against GPT-4 from DPO (11.23% → 13.21%). Additionally, in separate,
held-out, tasks such as summarization and controlled generation, models trained with the DiscoPOP
loss outperform or perform competitively with existing preference optimization algorithms.

Contributions: 1⃝ We propose an LLM-driven objective discovery pipeline to discover novel
offline preference optimization algorithms (Section 3). 2⃝ We discover multiple high-performing
preference optimization losses. One such loss, which we call Discovered Preference Optimization
(DiscoPOP), achieves strong performance across multiple held-out evaluation tasks of multi-turn
dialogue (AlpacaEval 2.0), controlled sentiment generation (IMDb) and summarization (TL;DR)
tasks. 3⃝ We provide an initial analysis of DiscoPOP, which is a weighted sum of logistic and
exponential losses, and discover surprising features. For example, DiscoPOP is non-convex.

2 Background

Preference Optimization. Consider a pre-trained language model policy πθ and a dataset D =
{(xi, yiw, y

i
l)}Ni=1 consisting of prompts x and preference-ranked completions yw and yl. In this

dataset, a human rater prefers yw over yl, denoted as yw ≻ yl. The task is to align πθ with the human
values implicit in these preferences. Canonically, this has been achieved through reinforcement
learning from human feedback [Christiano et al., 2017, RLHF], an approach that proceeds in two

2

phases: First, a reward modelling stage that learns a parameterized reward model rϕ. By assuming
a Bradley-Terry model [Bradley and Terry, 1952] of preferences, the probability of the data can
be expressed as P (yw ≻ yl) = exp rϕ(yw, x)/(exp rϕ(yw, x) + exp rϕ(yl, x)), and subsequently
simply optimized over ϕ through the maximum likelihood principle. The second stage of policy
optimization employs a reinforcement learning algorithm to train the language model against the
learned reward. Usually, a KL penalty is introduced between the model and the pre-RL reference
policy πref [Jaques et al., 2019, Stiennon et al., 2020] to prevent over-optimization and straying too
far from the original policy, resulting in the final objective:

max
πθ

Ey∼πθ,x∼P [rϕ(y, x)]︸ ︷︷ ︸
reward maximization

−βKL(πθ, πref)︸ ︷︷ ︸
regularization

. (1)

Despite success in frontier models [Anthropic, 2023, Gemini-Team, 2023], deep RL has many
implementations [Engstrom et al., 2019] and training challenges [Sutton, 1984, Razin et al., 2023]
that hinder its adoption. To simplify the whole process, direct preference optimization [Rafailov et al.,
2023, DPO] aims to forego both the reward modelling and online RL procedure. Rewriting (1) with a
decomposition of the KL term into:

max
πθ

Ey∼πθ,x∼P

[
rϕ(y, x)︸ ︷︷ ︸

reward

+β log πref (y|x)︸ ︷︷ ︸
πref regularization

]
+ βH(πθ)︸ ︷︷ ︸

policy entropy

, (2)

expresses the problem as an entropy-regularised RL bandit task [Ziebart et al., 2008], for which a
known analytical solution exists: π∗(y|x) = Z(x)−1πref (y|x) exp

(
β−1rϕ(y, x)

)
. By rearranging

the reward, we can express the task as a binary classification problem based on the reward difference:

min
πθ

E(yw,yl,x)∼D

[
f

(
β ·
(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

)
︸ ︷︷ ︸

rϕ(yw,x)−rϕ(yl,x)

)]
. (3)

Here, we define the log ratio difference as ρ = log πθ(yw|x)
πref(yw|x) − log πθ(yl|x)

πref(yl|x) . In DPO, the function
f = − log σ is derived as the negative log of the sigmoid function given the BT model assumptions.
However, Tang et al. [2024] highlighted that more generally we can obtain a recipe for offline
preference optimization algorithms by letting f : R → R be any scalar loss function. For example,
setting f(x) = (x− 1)

2, the squared loss function [Rosasco et al., 2004] yields IPO [Azar et al.,
2023], while employing the max-margin inspired hinge loss [Boser et al., 1992, Cortes and Vapnik,
1995] f(x) = max(0, 1− x) produces SLiC [Zhao et al., 2023].

Meta-Optimization for Algorithm Discovery. The goal of meta-optimization (optimizing the
optimization process) is to uncover novel learning algorithms using a data-driven process. Suppose
that an algorithm uses an objective function fγ to train a model for K iterations, where γ denotes a
set of meta-parameters. Meta-optimization searches for an objective that maximizes the expected
downstream performance max

γ
E[η(πK)|train(fγ)] where η is a downstream performance metric.

Unlike previous methods that rely on a predefined parameterization of γ (e.g., a neural network
[Hospedales et al., 2021] or domain-specific language [Alet et al., 2020]), we leverage LLMs to
directly propose code-level objective functions in Python. This approach eliminates the need for
a carefully designed search space and utilizes the extensive knowledge embedded in the LLM for
flexible selection and mutation.

3 LLM-Driven Objective Discovery

Choosing an appropriate objective function is crucial for instilling capabilities into networks. Here,
we detail our discovery process facilitated by LLM code-level objective function proposals:

Initial Context Construction. In the initial system prompt, we ‘burn-in’ the LLM using several
established objective functions given in code and their corresponding performance. Furthermore, we
provide problem details and an example of the output response format as a JSON dictionary.

LLM Querying, Parsing & Output Validation. We query the LLM, parse the response JSON, and
run a set of unit tests (e.g. for valid output shapes) before starting a training run. If the parsing or unit
tests fail, we resample a new solution after providing the error message as feedback to the LLM.

3

Performance Evaluation. The proposed objective function is then evaluated based on its ability to
optimize a model for a predefined downstream validation task. We refer to the resulting performance
metric as η.

Iterative Refinement. By using the performance provided as feedback, the LLM iteratively refines
its proposals. In each iteration, the model synthesizes a new candidate loss function, exploring both
variations of previously successful formulas and entirely new formulations that might improve upon
the existing benchmarks. This iterative process is repeated for a specified number of generations or
until convergence when a set of optimal loss functions is observed.

We summarise this general objective discovery process in Figure 1 and is shown in Algorithm 1.

Algorithm 1 LLM-Driven Objective Discovery

1: Initialize LLM with established loss functions and their performance in context.
2: repeat for each generation i
3: LLM proposes a new candidate objective function fi
4: Run unit tests to check the validity of the candidate and resample if needed.
5: Evaluate the objective function using the performance metric η
6: Update the LLM context with the performance data
7: LLM refines generation strategy based on the feedback
8: until convergence criteria are met or maximum generations are reached

Small case study: Discovering supervised classification loss functions. Consider the case of
supervised classification on the CIFAR-10 dataset as a simple starting example. We train a simple
ResNet-18 for 5 epochs using the objectives proposed by GPT-4 [OpenAI, 2023]. After each training
run we provide the LLM with the corresponding validation accuracy and query it for the next
PyTorch-based [Paszke et al., 2017] candidate objective function.

0 5 10 15 20 25 30
LLM Proposals/Generations

65

70

75

80

B
es

tA
cc

ur
ac

y

LLM Objective Discovery - CIFAR-10

Val
Test

ResNet18

SimpleDLA

EfficientNetB0

85

90

95

Te
st

A
cc

ur
ac

y

C
ro

ss
-E

nt
ro

py

FT
-T

em
p.

S
ca

le
&

S
m

oo
th

H
yb

rid
-S

m
oo

th
&

S
qu

ar
ed

FT
-H

yb
rid

-S
m

oo
th

&
S

qu
ar

ed

C
ro

ss
-E

nt
ro

py

FT
-T

em
p.

S
ca

le
&

S
m

oo
th

H
yb

rid
-S

m
oo

th
&

S
qu

ar
ed

FT
-H

yb
rid

-S
m

oo
th

&
S

qu
ar

ed

C
ro

ss
-E

nt
ro

py

FT
-T

em
p.

S
ca

le
&

S
m

oo
th

H
yb

rid
-S

m
oo

th
&

S
qu

ar
ed

FT
-H

yb
rid

-S
m

oo
th

&
S

qu
ar

ed

Transfer of Discovered Objective - Models

smoothed
cross

entropy
loss

combined cross
entropy squared

error loss

temperature
scaled cross
entropy loss

finetuned combined
temperature

scaling and label
smoothing loss

Figure 2: LLM-driven objective discovery for CIFAR-10 classification. Left. Performance across LLM-
discovery trials. The proposals alternate between exploring new objective concepts, tuning the components,
and combining previous insights. Right. The best three discovered objectives transfer to different network
architectures and longer training runs (100 epochs).

Figure 2 depicts the performance of the proposed objective functions across the discovery process.
The different discovered objectives all outperform the standard cross-entropy loss. Interestingly, we
observe that the LLM-driven discovery alternates between several different exploration, fine-tuning,
and knowledge composition steps: Initially, the LLM proposes a label-smoothed cross-entropy
objective. After tuning the smoothing temperature, it explores a squared error loss variant, which
improved the observed validation performance. Next, the two conceptually different objectives are
combined, leading to another significant performance improvement. Hence, the LLM discovery
process does not perform a random search over objectives previously outlined in the literature
but instead composes various concepts in a complementary fashion. Furthermore, the discovered
objectives also generalize to different architectures and longer training runs. In Appendix D.3 we
show that this process of discovery is robust to the choice of sampling temperature and prompt/context
construction.

4 Discovering Offline Preference Optimization Objectives

In this section, we run our LLM-driven discovery to automatically generate new state-of-the-art
preference optimization algorithms.

4

4.1 Discovery Task - Multi-turn Dialogue on MT-Bench

0 2 4 6 8 10 12
LLM Proposals/Generations

7.7

7.8

7.9

8.0
B

es
tM

T-
B

en
ch

S
co

re

logistic margin loss
combined logistic hinge loss

scaled combined logistic hinge losstemperature scaled logistic loss

decaying weights logistic loss

performance adaptive decay logistic loss

LLM Objective Discovery - Preference Optimization

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
LLM Proposals/Generations

7.6

7.7

7.8

7.9

8.0

B
es

tM
T-

B
en

ch
S

co
re

smoothed hinge loss

exponential log loss

combined exp logistic loss

adaptive quantile loss
LLM Objective Discovery - Preference Optimization

Figure 3: Examples of LLM Objective Discovery improvement across generations. The first and second runs
are shown left and right respectively.
In this section we use our LLM-driven discovery method to discover new objective func-
tions f for offline preference optimization, as defined in Section 2 and Equation (3). Specif-
ically, at each generation i, GPT-4 generates PyTorch [Paszke et al., 2017] code of can-
didate objective function fi. Each objective function takes as input the variables of
{log πθ(yw|x), log πref(yw|x), log πθ(yl|x), log πref(yl|x)}, and returns a scalar. For each proposed
objective fi, we check if fi is valid with a unit test.

For each valid generated objective function fi, we finetune an LLM and then collect a performance
evaluation score. Specifically, we build on top of the ‘alignment-handbook’ [Tunstall et al., 2023a]
repository to finetune our models. Notably, this repository, when using DPO, reproduces ‘Zephyr 7B
Gemma’2 Tunstall and Schmid [2024], Tunstall et al. [2023b], which at the time of release, achieved
state-of-the-art scores on MT-Bench for 7B models. ‘Zephyr 7B Gemma’ first takes gemma-7b
[Gemma-Team et al., 2024] and finetunes it on the ‘deita-10k-v0-sft’ dataset [Liu et al., 2023] to
produce ‘zephyr-7b-gemma-sft’3. It is then trained on the pairwise preference dataset of ‘Argilla
DPO Mix 7K’4. When evaluating a new objective function, we replace DPO in this last step with the
generated objective function, keeping the same hyperparameters. We show example runs in Figure 3
and provide further experimental details in Appendix B.

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 2 4 6 8 10

model
PADLL
LRML
SLiC
DPO
SFT base model

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 2 4 6 8 10

model
PADLL
LRML
SLiC
DPO
SFT base model

Figure 4: MT-Bench Discov-
ered Objective Evaluations

Once we have a trained LLM for the proposed objective function fi,
we evaluate that LLM on the popular multi-turn dialogue evaluation
benchmark of MT-Bench [Zheng et al., 2024]. This is a multi-turn
open-ended question set, which uses GPT-4 to assess the quality
of the trained model’s responses, obtaining a high correlation with
the popular Chatbot Arena [Zheng et al., 2024]. We provide further
evaluation details in Appendix C.

4.2 Discovery Results

After evaluating approximately 100 objective functions, we catalogued the best-performing ones in
Table 1. We tabulate the high-level objective forms here and provide the full objective loss functions
and their associated code in Appendix E. Moreover, we also plot the best performing sub-task
evaluations in Figure 4.

Table 1: Discovery Task MT-Bench Evaluation Scores for each discovered objective function f .
We provide the baselines first, followed by a dashed line to separate the objective functions that were
discovered. We provide details for each discovered objective function in Appendix E.

Name Full Name Objective f Function Score (/ 10) ↑
DPO Direct Preference Optimization log(1 + exp(−βρ)) 7.888
DPO* Official HuggingFace ‘zephyr-7b-gemma’ DPO model log(1 + exp(−βρ)) 7.810
SLiC Sequence Likelihood Calibration ReLU(1− βρ) 7.881
KTO Pairwise Kahneman-Tversky Optimization see [Ethayarajh et al., 2024] 7.603
DBAQL Dynamic Blended Adaptive Quantile Loss σ(Var[βρ/τ]) · fdpo(βρ/0.9) + (1− σ(Var[βρ/τ])) · fexp(βρ · 0.9) 7.978
AQL Adaptive Quantile Loss q · fdpo(βρ) + (1− q) · fslic(βρ) 7.953
PADLL Performance Adaptive Decay Logistic Loss 0.9 ·

(
1− 0.5 · 1[ρ < 0]

)
· fdpo(βρ) 7.941

AQFL Adaptive Quantile Feedback Loss r · fdpo(βρ) + (1− r) · fslic(βρ) 7.931
CELL Combined Exponential + Logistic Loss 0.5 · fdpo(βρ) + 0.5 · fexp(βρ) 7.925
LRML (DiscoPOP) Log Ratio Modulated Loss (1− σ(βρ/τ)) · fdpo(βρ) + σ(βρ/τ) · fexp(βρ) 7.916
PFL Policy Focused Loss 1/2 · fdpo(βρ) · 1[πw > πr] + 2 · fslic(βρ) · 1[πw ≤ πr] 7.900

2https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1
3https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-sft-v0.1
4https://huggingface.co/datasets/argilla/dpo-mix-7k

5

5 Held-Out Evaluations

We next validate each of our discovered objective functions (shown in Table 1) on held-out tasks.
We find that the Performance Adaptive Decay Loss (PADLL) and the Log Ratio Modulated Loss
(LRML) consistently perform well. Because of its unconventional properties and performance, we
refer to LRML as our discovered preference optimization, or DiscoPOP, algorithm.

We consider three different standard [Rafailov et al., 2023] open-ended text generation tasks
each designed to evaluate different properties of the fine-tuned LLM policy πθ where each
LLM policy is trained with one of our discovered objective functions f on a preference dataset
D = {(xi, yiw, y

i
l)}Ni=1.

5.1 Single-turn Dialogue - Alpaca Eval 2.0

We evaluate the trained models on Alpaca Eval 2.0, [Li et al., 2023, Dubois et al., 2023, 2024]. This
is a single-turn dialogue LLM-based automatic evaluation using GPT-4 to assess the win rate of the
trained LLM policy’s completion compared to the of the underlying SFT base model. Alpaca Eval
2.05, has been validated against 20K human annotations, and aims to reduce the length bias of Alpaca
Eval 1.0; where using length controlled (LC) Alpaca Eval shows a correlation with Chatbot Area of
0.98, making it a popular benchmark with the highest correlation to Chatbot Arena [Dubois et al.,
2024]. We also detail task training details in Appendix B.1.
Table 2: Alpaca Eval 2.0 - Held Out Single Turn Dialogue Task. Win rate of the discovered
objective functions f evaluated on the Alpaca Eval 2.0 task against either GPT-4 or the SFT base
model. Some of the discovered objective functions outperform the baselines, with the best bolded. We
detail evaluation and error bars in Appendix C. We have highlighted the best scores with overlapping
the standard errors.

Function Win Rate (%) ↑ Win Rate - LC (%) ↑ Win Rate (%) ↑ Win Rate - LC (%) ↑
vs. GPT-4 vs. SFT Checkpoint

DPO 11.23± 0.97 12.81± 0.66 78.72± 1.26 63.34± 0.30
DPO∗ 11.99± 1.00 14.73± 0.71 75.75± 1.31 59.88± 0.41
SLiC 10.67± 0.94 13; 16± 0.69 75.05± 1.34 59.67± 0.42
KTO 12.57± 1.00 13.58± 0.67 78.81± 1.25 62.76± 0.31
DBAQL 10.68± 0.92 11.41± 0.57 72.06± 1.42 54.40± 0.38
AQL 11.11± 0.96 13.63± 0.68 76.34± 1.30 60.94± 0.36
PADLL 14.07± 1.04 14.89± 0.66 81.10± 1.21 64.14± 0.28
AQFL 13.63± 1.05 15.55± 0.71 79.32± 1.23 64.41± 0.34
CELL 10.27± 0.93 12.26± 0.61 71.75± 1.39 57.48± 0.34
LRML 13.21± 1.02 14.78± 0.67 79.27± 1.24 65.18± 0.32
PFL 8.15± 0.83 10.67± 0.57 68.27± 1.44 56.14± 0.43

We provide the Alpaca Eval 2.0 results in Table 2. As reference policies, we used GPT-4 for absolute
comparison and the SFT-trained model for relative comparison. We observe that the discovered
LRML (DiscoPOP), PADLL, and AQFL functions outperform the baselines and other discovered
losses on the normal and length-controlled win rates. The differences in scores among these top-
performing losses are not significant, except for the LC win rate against the SFT reference model,
where DiscoPOP performs best.

5.2 Summarization (TL;DR)

We train an LLM policy to, given a forum post on Reddit x, generate a summarization y of the
main points. We finetune ‘zephyr-7b-gemma-sft‘ using 10% of the Reddit TL;DR summarization
preference dataset [Völske et al., 2017] on each of the baseline and discovered objective functions.
As a reference model, we again use ‘zephyr-7b-gemma-sft’. Further details on the training pipeline
are outlined in Appendix B.2. To evaluate the quality of the summaries, we make use of the Alpaca
Eval 2.0 library with a custom evaluation dataset existing of 694 test samples from the TL;DR dataset
and a custom GPT-4 annotator template as described in Rafailov et al. [2023]. For additional details
regarding the summarization evaluation see Appendix C.3.

5https://github.com/tatsu-lab/alpaca_eval

6

In Table 3 the PADLL loss and DPO loss perform best, with little difference from each other, on
the summarization task in three out of four metrics. Additionally, the LRML - DiscoPOP function
achieves scores slightly below the top performers, especially in the length-controlled win rates. In
contrast to the single-turn dialogue task, the AQFL loss does not achieve high scores in the held-out
evaluation.

Table 3: TL;DR - Held Out Summarization Task Win-rate of various preference optimization
functions in the summarization task was evaluated with the Alpaca Eval 2.0 calculations, against a
subset of the test set (694 samples). The baseline outputs are the human-generated preferences, and
the model after SFT (see Appendix C for details). Note that the standard error in the LC win-rate
has been rounded down because of values < 0.001. We have highlighted the scores with means
overlapping the standard error of the best score.

Function Win Rate (%) ↑ Win Rate - LC (%) ↑ Win Rate (%) ↑ Win Rate - LC (%) ↑
vs. Human Preference vs. SFT Checkpoint

DPO 88.27± 1.07 82.82± 0.00 54.38± 1.52 54.64± 0.00
SLiC 83.02± 1.29 63.41± 0.00 53.03± 1.52 54.11± 0.00
KTO 85.34± 1.18 80.26± 0.00 51.15± 1.54 50.0± 0.00
DBAQL 84.71± 1.21 78.68± 0.00 52.55± 1.52 55.14± 0.00
AQL 81.87± 1.32 68.89± 0.00 46.00± 1.54 50.0± 0.00
PADLL 88.54± 1.05 76.13± 0.00 55.34± 1.52 55.64± 0.00
AQFL 85.03± 1.22 76.23± 0.00 49.56± 1.53 50.38± 0.00
CELL 86.33± 1.14 73.72± 0.00 50.35± 1.52 51.90± 0.00
LRML 87.63± 1.10 81.88± 0.00 53.46± 1.52 55.10± 0.00
PFL 79.84± 1.35 69.23± 0.00 44.12± 1.52 44.57± 0.00

5.3 Positive sentiment generation (IMDb)

In this task, we train an LLM policy to generate movie review completions y with positive sentiment,
where x is a prompt at the start of a movie review from the IMDb dataset [Maas et al., 2011]. We start
with a GPT-2 [Radford et al., 2019] model, which had supervised fine-tuning on the IMDb dataset,
and we perform preference optimization using the baseline and discovered objective loss functions.
Details of the training implementations can be found in Appendix B.3. Inspired by Rafailov et al.
[2023]’s experiments, we calculate the model rewards through a pre-trained sentiment classifier,
which we use as a proxy for ground truth, as well as the KL-Divergence of the trained model and the
reference model. Appendix C.4 provides further details into the evaluation for this task.

We provide results of models with converging β values in Figure 5 for LRML compared against
DPO and SLiC, displaying the model rewards against the KL-Divergence to the reference model. In
Figure 5a, the LRML-trained text generator outperforms the DPO model in terms of rewards and
KL-divergence with low β values (0.025, 0.05, 0.1). At higher β values (0.5 and 1.0) both methods
show trends of increased KL-Divergence and lower rewards, but generally, LRML maintains a higher
reward than DPO. In Figure 5b, we note that LRML slightly outperforms DPO, SLiC, AQFL, and
PADLL at β ∈ {0.05, 0.1} in terms of reward. For larger β values (0.5 and 1.0), LRML shows similar
trends of increased KL-Divergence and rewards like the other objective functions. A more detailed
comparison between the individual discovered losses and the baselines can be found in Appendix
Figure 8.

6 Analysis of DiscoPOP

We list all our discovered objectives in Table 1, as well as the code and mathematical representations
in Appendix E. In this section, we now analyze the Log Ratio Modulated Loss, which we define as
the DiscoPOP loss function, as it performs consistently high across the held-out evaluation tasks, and
we provide some intuitive understanding of how it outperforms the existing state-of-the-art objectives.

6.1 Log Ratio Modulated Loss (DiscoPOP)

The Log Ratio Modulated Loss is a dynamically weighted sum of the logistic loss (as used in DPO)
and the exponential loss. The weight of each is determined through a sigmoid calculation of the

7

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
KL Divergence

0.86

0.88

0.90

0.92

0.94

0.96

0.98

R
ew

ar
d

β =0.025β =0.05
β =0.1

β =0.25

β =0.5

β =1.0

β =0.025β =0.05

β =0.1

β =0.25

β =0.5

β =1.0

IMDb Positive Text Generation: DPO vs LRML

DPO LRML

(a) DPO vs LRML

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
KL Divergence

0.86

0.88

0.90

0.92

0.94

0.96

0.98

R
ew

ar
d

IMDb Positive Text Generation: All

DPO
SLiC

AQFL PADLL LRML

(b) Discovered vs Baseline Losses

Figure 5: Frontiers of expected reward vs KL divergence for converging models for the LRML against DPO
and SLiC objective function. The rewards and KL-divergence values are averaged over 10 generations with
different seeds. The sweep is done over β ∈ {0.025, 0.05, 0.1, 0.25, 0.5, 1.0}. The optimal point is the top left
corner, where the perfect reward is achieved with minimal divergence from the reference model.

difference of log-ratios (ρ). Mathematically, the LRML function can be described with a temperature
parameter τ = 0.05 as follows:

flrml(βρ) = (σ(βρ/τ)− 1) · fdpo(βρ) + σ(βρ/τ) · fexp(βρ) (4)
= (1− σ(βρ/τ)) · log(1 + exp(−βρ)) + σ(βρ/τ) · exp(−βρ) (5)

If the difference of log ratios is zero (ρ = 0), which is at the start of the training when the model
policy πθ is equal to the reference policy πref, then the loss is equally balanced between the logistic
and exponential loss. If ρ → ∞, the model policy diverges from the reference policy and chosen
outputs are preferred, then the exponential term dominates. This emphasizes larger differences more
strongly. On the other hand, if ρ → −∞, the model policy diverges from the reference policy and
rejected outputs are preferred. In this case, the logistic loss can handle moderate differences well.
The baseline objective losses and the LRML, the PADLL, and the AQFL functions are displayed in
Figure 6, including their gradients. Surprisingly, we see that the DiscoPOP function has a non-convex
segment and negative gradients at the starting point ρ = 0. This is potentially helpful for introducing
a curriculum or for stochasticity.

−10 0 10 20 30 40
Logits ρ

0.0

0.5

1.0

1.5

Lo
ss

f(
ρ
)

Discovered Objective Functions

AQFL
PADLL
LRML

DPO
SLiC

(a) Discovered Objective Functions

−10 0 10 20 30 40
Logits ρ

−0.04

−0.02

0.00

0.02

0.04

G
ra

di
en

tf
′ (ρ

)

Gradient of Objective Functions

AQFL
PADLL
LRML

DPO
SLiC

(b) Gradients of the Discovered Objective Functions

Figure 6: Figure 6a: Baseline objective functions DPO and SLiC, and the discovered ones, LRML, AQFL, and
PADLL. Figure 6b: gradients of the objectives as a function of ρ and with fixed β = 0.05.

6.2 Limitations of DiscoPOP

While performing very well on single-turn text generation and text summarization, we observed
during the IMDb experiment that LRML struggles to converge when β is too low (β ≤ 0.01) or too
high (β ≥ 2.5), likely because β ̸= 0.05 was never seen or used during the discovery process.

In Figure 9 and Figure 10 of the Appendix, we plot the LRML objective function for β ∈
{0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2.5, 5} against DPO. When β is high, the DiscoPOP objective

8

function takes the form of the DPO log sigmoid loss. During training on β = 0.01, we observed that
DiscoPOP gets stuck in generating predominantly negative reviews (resulting in a reward score of
∼ 0.15). We hypothesize that the loss is stuck in the local minima to the left with a negative difference
in log ratios. While training with β ∈ {2.5, 5.0} we observed that the model collapsed after a sharp
spike in the loss and subsequently having loss value 0 and NaN outputs. This is potentially due to a
large gradient in the non-convex part, which could be amended with gradient clipping.

7 Related Work

Evolution and Search with Large Language Models. LLMs provide a fast and automated way to
create multiple candidate solutions for a problem stated in natural language [Song et al., 2024], which
makes them powerful tools for driving population-based search procedures. Various recent works
have applied this approach to coding problems [Romera-Paredes et al., 2024], neural architecture
search [Chen et al., 2024a], virtual robotic design settings [Lehman et al., 2023], reward functions
[Ma et al., 2023, Yu et al., 2023], and algorithm heuristics [Liu et al., 2024]. Finally, recently LLMs
have shown to be capable of acting as recombination operators for black-box optimization with
Evolution Strategies [Lange et al., 2024] and for Quality-Diversity approaches [Lim et al., 2024].

Automated Discovery for Machine Learning. There are many other approaches to automating the
discovery of generalizable machine learning algorithms. Some prior works explore the space of ML
functions using genetic algorithms and a hand-crafted domain-specific language for reinforcement
learning algorithms [Co-Reyes et al., 2021], curiosity algorithms [Alet et al., 2020], and optimizers
[Chen et al., 2024b]. Other works instead parameterize a transferrable objective function using neural
networks and optimize them with evolution strategies or meta-gradients. For example, Lu et al.
[2022], Jackson et al. [2024b], Houthooft et al. [2018], Alfano et al. [2024], Kirsch et al. [2019],
Oh et al. [2020], Jackson et al. [2024a] discover policy optimization objectives, Metz et al. [2022]
evolves neural network optimizers, and Lange et al. [2023b,a] evolve blackbox optimizers.

Preference Optimization Algorithms. While the reduction to supervised learning makes DPO and al-
ternatives easier to use, other approaches have sought to simplify the RL step, including using variants
of REINFORCE [Ahmadian et al., 2024, Gemma-Team et al., 2024] as well as more fine-grained feed-
back [Wu et al., 2024] through preferences over individual steps in the reasoning process [Uesato et al.,
2022, Lightman et al., 2023] or reward redistribution [Chan et al., 2024]. Others use iterative offline
training interleaved with sampling from the policy model and obtaining a preference ranking from
themselves [Xu et al., 2023], another judge LLM [Guo et al., 2024], or an oracle [Swamy et al., 2024].

8 Conclusion

Summary. In this paper, we proposed and used LLM-driven objective discovery to generate novel
offline preference optimization algorithms. Specifically, we were able to discover high-performing
preference optimization losses that achieve strong performance across held-out evaluation tasks, with
the highest performing providing new insights into what an optimal objective may need to possess,
such as being a blend of logistic and exponential losses, and possibly being non-convex.

Limitations & Future work. There are multiple limitations to our current approach. First, we have
only scratched the surface of how to generate LLM objective proposals most effectively. Initial
exploratory experiments using techniques such as temperature sampling or worst-to-best performance
sorting in the context did not yield significant improvements. But one could imagine leveraging more
information about the training runs and automatically tuning instruction prompt templates. E.g. by
providing entire learning curve plots to a Visual Language Model (see Figure 12) or by meta-meta-
optimizing [Lu et al., 2023] the LLM prompt. Second, the highest-performing loss re-purposed β in
the traditional sense, making it affect the functional behavior as well as the KL penalty of the model
with respect to the base model. This motivates future work to study different forms, with perhaps
multiple floating point parameters in the form, that each could be tuned separately. Although we
provided an initial analysis sweep over this one single parameter and observed some instances of the
functional behavior leading to instability of training the model, a further multi-parameter analysis,
reformulating the objective, would be beneficial for future work. Finally, our work uses closed-source
models (GPT-4) to generate code, which limits reproducibility and is costly to run. Future work could
use the produced models themselves to generate code, resulting in code-level self-improvement.

9

Broader Impact and Ethical Considerations. This paper presents an LLM-driven discovery
in-context learning pipeline that is used to generate better-performing novel offline preference
optimization algorithms. However, misuse of the pipeline as a tool or training an LLM to produce
undesirable, unethical, or harmful outputs could be possible by a user. Furthermore, due to the use
of LLMs and training of LLMs, the outputs are susceptible to hallucinations, motivating all outputs
of the LLMs to always have a content filter applied to the outputs. Finally, this work takes a small
step towards code-level self-improvement in language models, which could potentially result in
unintended behaviors.

Acknowledgments and Disclosure of Funding

This work was supported by Azure sponsorship credits granted by Microsoft’s AI for Good Research
Lab and by Microsoft’s Accelerate Foundation Models Academic Research initiative. The hardware
used for training was sponsored by GoodAI. SH is funded by AstraZeneca. CF is funded by Canon
Medical. AJC is funded by a Microsoft Research and EPSRC ICASE scholarship award. The code
can also be accessed at https://github.com/samholt/DiscoPOP.

References
Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Ahmet Üstün, and

Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning from human
feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Ferran Alet, Martin F Schneider, Tomas Lozano-Perez, and Leslie Pack Kaelbling. Meta-learning
curiosity algorithms. arXiv preprint arXiv:2003.05325, 2020.

Carlo Alfano, Sebastian Towers, Silvia Sapora, Chris Lu, and Patrick Rebeschini. Meta-learning the
mirror map in policy mirror descent. arXiv preprint arXiv:2402.05187, 2024.

Anthropic. Model card and evaluations for claude models, 2023. URL https://www-files.
anthropic.com/production/images/Model-Card-Claude-2.pdf.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. A general theoretical paradigm to understand learning from human
preferences. arXiv preprint arXiv:2310.12036, 2023.

Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for optimal
margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory,
pages 144–152, 1992.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pages
2633–2650, 2021.

Alex J Chan, Hao Sun, Samuel Holt, and Mihaela van der Schaar. Dense reward for free in
reinforcement learning from human feedback. arXiv preprint arXiv:2402.00782, 2024.

Angelica Chen, David Dohan, and David So. Evoprompting: Language models for code-level neural
architecture search. Advances in Neural Information Processing Systems, 36, 2024a.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in Neural Information Processing Systems, 36, 2024b.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

10

John D Co-Reyes, Yingjie Miao, Daiyi Peng, Esteban Real, Sergey Levine, Quoc V Le, Honglak
Lee, and Aleksandra Faust. Evolving reinforcement learning algorithms. arXiv preprint
arXiv:2101.03958, 2021.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20:273–297,
1995.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Alpacafarm: A simulation framework for methods that
learn from human feedback, 2023.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph,
and Aleksander Madry. Implementation matters in deep rl: A case study on ppo and trpo. In
International conference on learning representations, 2019.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization, 2024.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A Smith. Real-
toxicityprompts: Evaluating neural toxic degeneration in language models. arXiv preprint
arXiv:2009.11462, 2020.

Google DeepMind Gemini-Team. Gemini: A family of highly capable multimodal models, 2023.

Gemma-Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from online
ai feedback. arXiv preprint arXiv:2402.04792, 2024.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):
5149–5169, 2021.

Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly Stadie, Filip Wolski, OpenAI Jonathan Ho, and
Pieter Abbeel. Evolved policy gradients. Advances in Neural Information Processing Systems, 31,
2018.

Matthew T Jackson, Minqi Jiang, Jack Parker-Holder, Risto Vuorio, Chris Lu, Greg Farquhar,
Shimon Whiteson, and Jakob Foerster. Discovering general reinforcement learning algorithms
with adversarial environment design. Advances in Neural Information Processing Systems, 36,
2024a.

Matthew Thomas Jackson, Chris Lu, Louis Kirsch, Robert Tjarko Lange, Shimon Whiteson, and
Jakob Nicolaus Foerster. Discovering temporally-aware reinforcement learning algorithms. arXiv
preprint arXiv:2402.05828, 2024b.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Louis Kirsch, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Improving generalization in meta
reinforcement learning using learned objectives. arXiv preprint arXiv:1910.04098, 2019.

11

Robert Lange, Tom Schaul, Yutian Chen, Chris Lu, Tom Zahavy, Valentin Dalibard, and Sebastian
Flennerhag. Discovering attention-based genetic algorithms via meta-black-box optimization. In
Proceedings of the Genetic and Evolutionary Computation Conference, pages 929–937, 2023a.

Robert Lange, Tom Schaul, Yutian Chen, Tom Zahavy, Valentin Dalibard, Chris Lu, Satinder Singh,
and Sebastian Flennerhag. Discovering evolution strategies via meta-black-box optimization. In
Proceedings of the Companion Conference on Genetic and Evolutionary Computation, pages
29–30, 2023b.

Robert Tjarko Lange, Yingtao Tian, and Yujin Tang. Large language models as evolution strategies.
arXiv preprint arXiv:2402.18381, 2024.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O Stanley.
Evolution through large models. In Handbook of Evolutionary Machine Learning, pages 331–366.
Springer, 2023.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 2023.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Bryan Lim, Manon Flageat, and Antoine Cully. Large language models as in-context ai generators
for quality-diversity. arXiv preprint arXiv:2404.15794, 2024.

Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In Forty-first International Conference on Machine Learning, 2024.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for
alignment? a comprehensive study of automatic data selection in instruction tuning. arXiv preprint
arXiv:2312.15685, 2023.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. The flan collection: Designing data and methods for effective
instruction tuning. In International Conference on Machine Learning, pages 22631–22648. PMLR,
2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2017. URL https://api.semanticscholar.org/
CorpusID:53592270.

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, and Jakob Foerster.
Discovered policy optimisation. Advances in Neural Information Processing Systems, 35:16455–
16468, 2022.

Chris Lu, Sebastian Towers, and Jakob Foerster. Arbitrary order meta-learning with simple population-
based evolution. In ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life
Conference. MIT Press, 2023.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. arXiv preprint arXiv:2310.12931, 2023.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pages 142–150, 2011.

Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury,
Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al. Velo: Training versatile learned
optimizers by scaling up. arXiv preprint arXiv:2211.09760, 2022.

12

Junhyuk Oh, Matteo Hessel, Wojciech M Czarnecki, Zhongwen Xu, Hado P van Hasselt, Satinder
Singh, and David Silver. Discovering reinforcement learning algorithms. Advances in Neural
Information Processing Systems, 33:1060–1070, 2020.

OpenAI. Gpt-4 technical report, 2023.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. arXiv
preprint arXiv:2305.18290, 2023.

Noam Razin, Hattie Zhou, Omid Saremi, Vimal Thilak, Arwen Bradley, Preetum Nakkiran, Joshua
Susskind, and Etai Littwin. Vanishing gradients in reinforcement finetuning of language models.
arXiv preprint arXiv:2310.20703, 2023.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Lorenzo Rosasco, Ernesto De Vito, Andrea Caponnetto, Michele Piana, and Alessandro Verri. Are
loss functions all the same? Neural computation, 16(5):1063–1076, 2004.

Xingyou Song, Yingtao Tian, Robert Tjarko Lange, Chansoo Lee, Yujin Tang, and Yutian Chen.
Position paper: Leveraging foundational models for black-box optimization: Benefits, challenges,
and future directions. arXiv preprint arXiv:2405.03547, 2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

Richard Stuart Sutton. Temporal credit assignment in reinforcement learning. University of Mas-
sachusetts Amherst, 1984.

Gokul Swamy, Christoph Dann, Rahul Kidambi, Zhiwei Steven Wu, and Alekh Agarwal. A minimaxi-
malist approach to reinforcement learning from human feedback. arXiv preprint arXiv:2401.04056,
2024.

Yunhao Tang, Zhaohan Daniel Guo, Zeyu Zheng, Daniele Calandriello, Rémi Munos, Mark Rowland,
Pierre Harvey Richemond, Michal Valko, Bernardo Ávila Pires, and Bilal Piot. Generalized
preference optimization: A unified approach to offline alignment. arXiv preprint arXiv:2402.05749,
2024.

Lewis Tunstall and Philipp Schmid. Zephyr 7b gemma. https://huggingface.co/
HuggingFaceH4/zephyr-7b-gemma-v0.1, 2024.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Shengyi Huang, Kashif Rasul,
Alexander M. Rush, and Thomas Wolf. The alignment handbook. https://github.com/
huggingface/alignment-handbook, 2023a.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, Nathan Sarrazin, Omar
Sanseviero, Alexander M. Rush, and Thomas Wolf. Zephyr: Direct distillation of lm alignment,
2023b.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

13

Michael Völske, Martin Potthast, Shahbaz Syed, and Benno Stein. Tl; dr: Mining reddit to learn
automatic summarization. In Proceedings of the Workshop on New Frontiers in Summarization,
pages 59–63, 2017.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, and
Nathan Lambert. TRL: Transformer Reinforcement Learning. URL https://github.com/
huggingface/trl.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A Smith,
Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for
language model training. Advances in Neural Information Processing Systems, 36, 2024.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more cringe than
others: Preference optimization with the pairwise cringe loss. arXiv preprint arXiv:2312.16682,
2023.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Arenas,
Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to rewards
for robotic skill synthesis. arXiv preprint arXiv:2306.08647, 2023.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Zhanhui Zhou, Zhixuan Liu, Jie Liu, Zhichen Dong, Chao Yang, and Yu Qiao. Weak-to-strong
search: Align large language models via searching over small language models. arXiv preprint
arXiv:2405.19262, 2024.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

14

Appendix

Table of Contents
A LLM-Driven Objective Discovery Implementation Details 16

A.1 Prompts . 16

B Training Details 18
B.1 Discovery Task - Single-turn Dialogue . 18
B.2 TL;DR Summarization . 18
B.3 IMDb Positive Text Generation . 19

C Evaluation Metrics 19
C.1 MT-Bench . 19
C.2 Alpaca Eval . 20
C.3 TL;DR Summarization Win-Rate . 20
C.4 IMDb Rewards vs KL-Divergence . 20

D Additional Results 21
D.1 Frontiers of Expected Reward vs KL Divergence 21
D.2 Loss Sweeps for Different Beta Parameters . 22
D.3 Discovery Robustness with respect to LLM Hyperparameters 23
D.4 Visual Language Models for Objective Discovery 23

E Discovered Objective Functions 23
E.1 DBAQL: Dynamic Blended Adaptive Quantile Loss 24
E.2 AQL: Adaptive Quantile Loss . 24
E.3 PADLL: Performance Adaptive Decay Logistic Loss 25
E.4 AQFL: Adaptive Quantile Feedback Loss . 26
E.5 CELL: Combined Exponential + Logistic Loss 26
E.6 LRML: Log Ratio Modulated Loss . 27
E.7 PFL: Policy Focused Loss . 27

F Full Run Log 28

15

A LLM-Driven Objective Discovery Implementation Details

A.1 Prompts

We use the following system prompt to generate the model responses:

You are a machine learning researcher who is testing out different
RLHF loss functions. When you respond , output a JSON where the
first key (" thought ") corresponds to your thought process when
designing the next function. The second key ("name") corresponds
to the name of your next function. Finally , the last key ("code")
corresponds to the exact python code that you would like to try.
Here is an example:

{
"thought ": "Based on the previous outputs , I should try the direct

preference optimization algorithm .",
"name": "dpo",
"code": "def sigmoid_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios
losses = -F.logsigmoid(self.beta * logits)
return losses"

}

You are deeply familiar with binary classification losses from the
literature. Be creative and reference prior literature when
possible.

You must use the exact function interface used above. Feel free to
define extra hyperparameters within your function as constants. Do
not make them attributes of self.

Note that ‘self.beta = 0.05 ‘.

RLHF loss functions train on a dataset of pairs of preferred and
rejected completions.

‘policy_chosen_logps ‘ refers to the policy ’s log probabilities of the
preferred completion , and ‘policy_rejected_logps ‘ refers to the
policy ’s log probabilities of the rejected completion.

‘reference_chosen_logps ‘ and ‘reference_rejected_logps ‘ refer to the
same for the reference (base) model.

The user will then return to you a fitness that corresponds to the
performance of the resulting model on a downstream task. Your goal
is to maximize performance.

We then provide the first user prompt as such:

Here are some results we’ve obtained:

[
{

"code": "
def logistic_log_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,

16

policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios
losses = -F.logsigmoid(self.beta * logits)
return losses
",
"fitness ": 7.8875

},
{

"code": "
def hinge_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios
losses = torch.relu(1 - self.beta * logits)
return losses
",
"fitness ": 7.88125

},
{

"code": "
def ipo_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios
losses = (logits - 1 / (2 * self.beta)) ** 2
return losses
",
"fitness ": 7.84

},
{

"code": "
def kto_pair_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
chosen_KL = (policy_chosen_logps - reference_chosen_logps).mean().
clamp(min =0)
rejected_KL = (policy_rejected_logps - reference_rejected_logps).
mean().clamp(min=0)

chosen_logratios = policy_chosen_logps - reference_chosen_logps
rejected_logratios = policy_rejected_logps -
reference_rejected_logps
As described in the KTO report , the KL term for chosen (rejected
) is estimated using the rejected (chosen) half.

17

losses = torch.cat(
(

1 - F.sigmoid(self.beta * (chosen_logratios - rejected_KL)
),

1 - F.sigmoid(self.beta * (chosen_KL - rejected_logratios)
),

),
0,

)
return losses
",
"fitness ": 7.603125

}
]

Please generate the next one.

Upon testing the generated code, if an error is encountered, we provide the following prompt, where
‘error’ is the text containing the system error:

Code not valid. Error:
{error}
Please generate the next one.

Upon successful completion, we return the following user prompt, where ‘val’ is the MT-Bench
score:

Fitness: {val}.
Please generate the next one.

B Training Details

B.1 Discovery Task - Single-turn Dialogue

For each valid generated objective function fi, we use it to train an LLM and then collect a perfor-
mance evaluation score. Specifically, we follow the same process when training and evaluating all
objective functions, starting with a pre-trained supervised fine-tuned (SFT) 7 billion gemma model of
‘zephyr-7b-gemma-sft’ This is a 7 billion base version gemma [Gemma-Team et al., 2024] model
supervised-fine-tuned on the ‘deita-10k-v0-sft’ dataset [Liu et al., 2023]. Starting with this model,
we train it on the pairwise preference dataset of ‘Argilla DPO Mix 7K’; which attempts to create a
high-quality preference dataset by filtering only highly rated chosen responses from the datasets of
a multi-turn dataset, instruction following dataset [Longpre et al., 2023] and a diverse preference
dataset that covers truthfulness, honesty and helpfulness [Cui et al., 2023]. For each training run,
we trained all the parameters of the starting model, using a fixed β = 0.05. We used the same fixed
hyper-parameters for all training runs unless explicitly noted. Specifically, we used a learning rate of
5e-7, bfloat16 floating-point format, two epochs, a batch size per device of two, a gradient accumula-
tion step of 8, a cosine learning rate scheduler, and AdamW optimization algorithm [Loshchilov and
Hutter, 2017]. We use the popular TRL transformers library [von Werra et al.], adapting the offline
preference optimization objective function to train all models. The models were trained on 8 Nvidia
A100 GPUs. An individual training run takes approximately 30 minutes. We provide training and
evaluation statistics for discovered objective functions in Figure 7.

B.2 TL;DR Summarization

To determine if the discovered objective functions generalize well also to other tasks, we use them to
preference optimize an LLM for text summarization. Specifically, we start again with a pre-trained
supervised fine-tuned (SFT) 7 billion gemma model of ‘zephyr-7b-gemma-sft’, and we optimized it
with the objective function fi on a subsample of the Reddit TL;DR summarization preference dataset

18

0 20 40 60 80 100
Train Step

0.2

0.4

0.6

0.8

1.0

Lo
ss

Train and Eval Loss
DPO
PADLL
LRML
SLiC
Final Eval Loss

(a) Loss

0 20 40 60 80 100
Train Step

0.0

0.2

0.4

0.6

0.8

Re
wa

rd
 A

cc
ur

ac
y

Train and Eval Accuracy

DPO
PADLL
LRML
SLiC
Final Eval Accuracy

(b) Accuracy

Figure 7: Training and eval statistics of DPO, SLiC, PADLL, and LRML. The losses are not directly
comparable to each other, as they are calculated differently for each model. Interestingly, eval results
are not strongly correlated with the downstream MT-Bench scores, as LRML achieves the worst
accuracy.

[Völske et al., 2017]6. More precisely we use the first 10% of the dataset for preference optimization,
which amounts to around 8’000 training samples. During training the hyperparameters are kept the
same as in the single-turn dialogue task, explained in subsection B.1, except that LLMs were trained
4 Nvidia A100 GPUS using a gradient accumulation step of 16. An individual training run takes
approximately 1.5 hours.

B.3 IMDb Positive Text Generation

Another popular generalization task for preference optimization [Rafailov et al., 2023] is to fine-tune
a small LLM to generate positive text for movie review, based on the IMDb sentiment dataset [Maas
et al., 2011]7 following the the work of Zhou et al. [2024]. As a starting model, we use a GPT2
model [Radford et al., 2019], that was supervised fine-tuned on the IMDb dataset8. Subsequently, we
apply the baseline and discovered objective function fi for preference optimization. The goal of the
LLM is to give a short prompt of 2-8 tokens, which indicate the start of a movie review, to generate a
positive review. As we are interested in the effect of β on the rewards and KL-Divergence, we train
the objective functions over a sweep of β ∈ {0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2.5, 5}. Every LLM
is trained for three epochs, using the AdamW optimizer, with an initial learning rate of 5.0e-5, a
warm-up scheduler of 0.1, and a cosine learning rate scheduler. The models are trained on 4 Nvidia
A100 GPUs, using a gradient accumulation step of 8, and a batch size per device of 2. The training
takes around 30 minutes.

C Evaluation Metrics

C.1 MT-Bench

To assess the fitness of the discovered preference optimization loss function during the discovery
phase, we evaluate the trained LLMs on the MT-Bench [Zheng et al., 2024] benchmark. The
evaluation benchmark consists of high quality 80 multi-turn questions, from various disciplines. The
goal is to assess LLM’s ability to follow instructions and keep the flow of a conversation. A larger
LLM, in our case GPT-4, is then used as judge to score the quality of the answers with a number
from 0 (lowest) to 10 (highest). Scores are given based on the quality of the LLM’s first-turn answer
(single-turn), as well as on first and second answers (multi-turn). Finally, the MT-Bench score is
the average of single-turn and multi-turn scores. For answer generation and evaluation, we used the

6https://huggingface.co/datasets/CarperAI/openai_summarize_comparisons
7https://huggingface.co/datasets/ZHZisZZ/imdb_preference
8https://huggingface.co/lvwerra/gpt2-imdb

19

FastChat library9 and its standard sampling and temperature parameters, provided by Zheng et al.
[2024].

C.2 Alpaca Eval

Currently, Alpaca Eval 2.0 [Li et al., 2023, Dubois et al., 2023, 2024] is also a popular benchmark
to evaluate LLMs. This is a single-turn dialogue LLM-based automatic evaluation using a stronger
LLM, here GPT-4 Turbo, to assess the win rate of the trained LLM policy’s completion compared
to either GPT-4 or the of the underlying SFT base model. Specifically, Alpaca Eval 2.0, has been
validated against 20K human annotations, and aims to reduce the length bias of Alpaca Eval; where
using length-controlled (LC) Alpaca Eval shows a correlation with Chatbot Arena of 0.98, making it
a popular benchmark with the highest correlation to Chatbot Arena [Dubois et al., 2024]. The Alpaca
evaluation dataset consists of 841 high-quality instructions, originating from different data sets. The
library10 provided by Dubois et al. [2024] calculates the win-rate (percentage were the trained policy
is prefered over the reference policy, first introduced in Alpaca Eval 1.0), and a length-controlled
win-rate, where a linear model is fitted to de-bias for length of the prompt and instruction difficulty.
To generate the answers we use a temperature of 0.7, sampling, and a maximum number of new
tokens of 1024. Furthermore, the library provides the standard error of the mean, which indicates the
confidence of the win-rate and LC win-rate.

C.3 TL;DR Summarization Win-Rate

To evaluate how well the discovered objective functions generalize to the task of summarization,
we make use of the Alpaca Eval 2.0 library, similar to subsection C.2. Instead of using the Alpaca
evaluation dataset, we create a custom dataset consisting of 694 samples from the IMDb preference
test dataset. Additionally, we change the prompt of the annotator LLM, to fit the "Summarization
GPT-4 win rate prompt (C)" as described in Rafailov et al. [2023]. The (LC) win-rate is calculated
against either the existing human-chosen test sample or against the summary generated by the SFT
reference model. For summary generation, we apply a temperature parameter of 0.7, sampling, and a
maximum of 256 new tokens. Moreover, we stop the summarization after the "\n" token, to avoid
nonsensical generations. Furthermore, as we do not have access to calculate an instruction difficulty
for the length-controlled win-rate, we omit this term from the linear model (This has only a small
impact on the metric). In addition to the win-rates we also provide the standard error as a measure of
confidence.

C.4 IMDb Rewards vs KL-Divergence

For the positive text generation, we do not require an LLM judge compared to MT-Bench, Alpaca
Eval 2.0, and TL;DR evaluation, as we take a pre-trained sentiment classifier11 as ground truth reward
scorer. For the positive text generation, the LLMs apply sampling and a maximum of 60 new tokens.
The rewards and KL-divergence are averaged over 10 different generations from the trained LLMs.

9https://github.com/lm-sys/FastChat
10https://github.com/tatsu-lab/alpaca_eval
11https://huggingface.co/siebert/sentiment-roberta-large-english

20

D Additional Results

D.1 Frontiers of Expected Reward vs KL Divergence

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
KL Divergence

0.86

0.88

0.90

0.92

0.94

0.96

0.98

R
ew

ar
d

β =0.025β =0.05
β =0.1

β =0.25

β =0.5

β =1.0

β =0.025β =0.05

β =0.1

β =0.25

β =0.5

β =1.0

IMDb Positive Text Generation: DPO vs LRML

DPO LRML

(a) SLiC vs LRML

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
KL Divergence

0.86

0.88

0.90

0.92

0.94

0.96

0.98

R
ew

ar
d

β =0.025

β =0.05

β =0.1

β =0.25

β =0.5
β =1.0

β =0.025β =0.05

β =0.1

β =0.25

β =0.5

β =1.0

IMDb Positive Text Generation: SLiC vs LRML

SLiC LRML

(b) SLiC vs LRML

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
KL Divergence

0.86

0.88

0.90

0.92

0.94

0.96

0.98

R
ew

ar
d

β =0.025β =0.05
β =0.1

β =0.25

β =0.5

β =1.0

β =0.025
β =0.05

β =0.1

β =0.25

β =0.5

β =1.0

IMDb Positive Text Generation: DPO vs PADLL

DPO PADLL

(c) DPO vs PADLL

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
KL Divergence

0.86

0.88

0.90

0.92

0.94

0.96

0.98

R
ew

ar
d

β =0.025

β =0.05

β =0.1

β =0.25

β =0.5
β =1.0

β =0.025
β =0.05

β =0.1

β =0.25

β =0.5

β =1.0

IMDb Positive Text Generation: SLiC vs PADLL

SLiC PADLL

(d) SLiC vs PADLL

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
KL Divergence

0.86

0.88

0.90

0.92

0.94

0.96

0.98

R
ew

ar
d

β =0.025β =0.05
β =0.1

β =0.25

β =0.5

β =1.0

β =0.025
β =0.05

β =0.1

β =0.25

β =0.5

β =1.0

IMDb Positive Text Generation: DPO vs AQFL

DPO AQFL

(e) DPO vs AQFL

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
KL Divergence

0.86

0.88

0.90

0.92

0.94

0.96

0.98

R
ew

ar
d

β =0.025

β =0.05

β =0.1

β =0.25

β =0.5
β =1.0

β =0.025
β =0.05

β =0.1

β =0.25

β =0.5

β =1.0

IMDb Positive Text Generation: SLiC vs AQFL

SLiC AQFL

(f) SLiC vs AQFL

Figure 8: Frontiers of expected reward vs KL divergence after convergence for the baseline functions and all
the discovered ones. The rewards and KL divergence values are averaged over 10 generations with different
seeds. The sweep is done over β ∈ {0.025, 0.05, 0.1, 0.25, 0.5, 1, }. The optimal point is the top left corner,
where perfect reward is achieved with minimal divergence from the reference model, to avoid reward hacking.

21

D.2 Loss Sweeps for Different Beta Parameters

−20 0 20 40
Logits ρ

0.5

0.6

0.7

0.8

Lo
ss

f(
ρ

)

β =0.01

DPO
LRML

−20 0 20 40
Logits ρ

0.4

0.6

0.8

1.0

Lo
ss

f(
ρ

)

β =0.025

DPO
LRML

−20 0 20 40
Logits ρ

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

f(
ρ

)

β =0.05

DPO
LRML

−20 0 20 40
Logits ρ

0.0

0.5

1.0

1.5

2.0

Lo
ss

f(
ρ

)

β =0.1

DPO
LRML

−20 0 20 40
Logits ρ

0

1

2

3

4

5

Lo
ss

f(
ρ

)

β =0.25

DPO
LRML

−20 0 20 40
Logits ρ

0

2

4

6

8

10

Lo
ss

f(
ρ

)

β =0.5

DPO
LRML

−20 0 20 40
Logits ρ

0

5

10

15

20

Lo
ss

f(
ρ

)

β =1

DPO
LRML

−20 0 20 40
Logits ρ

0

10

20

30

40

50

Lo
ss

f(
ρ

)

β =2.5

DPO
LRML

−20 0 20 40
Logits ρ

0

20

40

60

80

100

Lo
ss

f(
ρ

)

β =5

DPO
LRML

Comparison of DPO vs LRML for different β Values

Figure 9: DPO and LRML objective function over β ∈ {0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2.5, 5}.

−20 0 20 40
Logits ρ

−0.0075

−0.0050

−0.0025

0.0000

0.0025

0.0050

0.0075

Lo
ss

G
ra

di
en

t∇
ρ
f(
ρ

)

β =0.01

DPO
LRML

−20 0 20 40
Logits ρ

−0.02

−0.01

0.00

0.01

0.02

Lo
ss

G
ra

di
en

t∇
ρ
f(
ρ

)

β =0.025

DPO
LRML

−20 0 20 40
Logits ρ

−0.04

−0.02

0.00

0.02

0.04

Lo
ss

G
ra

di
en

t∇
ρ
f(
ρ

)

β =0.05

DPO
LRML

−20 0 20 40
Logits ρ

−0.05

0.00

0.05

Lo
ss

G
ra

di
en

t∇
ρ
f(
ρ

)

β =0.1

DPO
LRML

−20 0 20 40
Logits ρ

−0.2

−0.1

0.0

0.1

0.2

Lo
ss

G
ra

di
en

t∇
ρ
f(
ρ

)

β =0.25

DPO
LRML

−20 0 20 40
Logits ρ

−0.4

−0.2

0.0

0.2

0.4

Lo
ss

G
ra

di
en

t∇
ρ
f(
ρ

)

β =0.5

DPO
LRML

−20 0 20 40
Logits ρ

−1.0

−0.5

0.0

0.5

Lo
ss

G
ra

di
en

t∇
ρ
f(
ρ

)

β =1

DPO
LRML

−20 0 20 40
Logits ρ

−2

−1

0

1

2

Lo
ss

G
ra

di
en

t∇
ρ
f(
ρ

)

β =2.5

DPO
LRML

−20 0 20 40
Logits ρ

−4

−2

0

2

4

Lo
ss

G
ra

di
en

t∇
ρ
f(
ρ

)

β =5

DPO
LRML

Comparison of DPO vsLRML Gradients for Different β Values

Figure 10: DPO and LRML gradient function over β ∈ {0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2.5, 5}.

22

D.3 Discovery Robustness with respect to LLM Hyperparameters

Figure 11: Robustness of the LLM-driven discovery process. Left. We compare different sampling temper-
atures {0.1, 0.5.1.0}. Middle. The default configuration includes all objective proposals and evaluations in
chronological order. Here we also explore using only the top-K performing objectives unsorted and sorted by
their performance. Right. We also investigate whether using a "thought" as part of the context and whether
to include non-valid code and error messages improves performance. The discovery process for CIFAR-10
objectives (5 epochs) is robust to these settings. The results are averaged across 3 independent runs.

D.4 Visual Language Models for Objective Discovery

Figure 12: Objective Discovery with a Visual Language Model (VLM) for CIFAR-10 (20 epochs). We provide
a plot of the training and validation accuracy across training as context components to the VLM (GPT-4-Turbo).

E Discovered Objective Functions

To describe the discovered losses mathematically, we define three existing preference optimization
losses here:

fdpo(βρ) = −log(σ(βρ)) = −log(
1

1 + exp(−βρ)
) = log(1 + exp(−βρ)) (6)

fslic(βρ) = ReLU(1− βρ) (7)

fexp(βρ) = exp(−βρ) (8)

Moreover, we display the code of the discovered losses as it is output by the LLM. In addition,
we provide a mathematical representation of each, which we have adapted to be consistent with
β being the KL-Divergence regularization parameter. This is due to the fact, that the generated
code for LRML, DBAQL, AQL, AQFL, and PFL did not uphold the β ought to be multiplied with
the difference of log-ratios, before any further calculations. If this was not upheld, it could to the
loss function changing shapes based on the KL-regularization term, and therefore models could not

23

converge, or potentially collapse. In future work, we should constrain the exploring LLM to uphold
the β multiplication with the input, before any other calculations are done with the difference of
log-ratios ρ. As the meta exploration was done with a set β = 0.05, and we wish to keep consistent
with this scale of regularization, we have adapted the losses by dividing ρ values used in intermediate
calculations with a scalar τ = 0.05.

In the IMDb experiment in Section 5, we have thus used the corrected version of codes for the
discovered losses, based on the provided mathematical representation, as we were most interested in
the effect of the KL-divergence compared to the model rewards.

E.1 DBAQL: Dynamic Blended Adaptive Quantile Loss

MT-Bench Score: 7.978

def dynamic_blended_adaptive_quantile_loss(
self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
import torch.nn.functional as F
Constants for the loss function
starting_quantile = 0.5
quantile_adapt_rate = 0.01
temperature = 0.9
dynamic_blend_rate = 1.0

pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios
logits_variability = logits.var()

Calculate an adaptive quantile based on a moving target
moving_quantile = starting_quantile + quantile_adapt_rate * (torch
.sigmoid(logits.mean()) - starting_quantile)

Calculate dynamic blending coefficient based on logits
variability
dynamic_blend_coeff = torch.sigmoid(logits_variability) *
dynamic_blend_rate

Prepare components of the blended loss
logistic_loss = -F.logsigmoid(self.beta * logits / temperature)
exp_loss = torch.exp(-self.beta * logits * temperature)

Blend the losses dynamically
losses = dynamic_blend_coeff * logistic_loss + (1 -
dynamic_blend_coeff) * exp_loss
return losses

fdbaql(βρ) = σ(Var[βρ/τ]) · fdpo(βρ/0.9) + (1− σ(Var[βρ/τ])) · fexp(βρ · 0.9) (9)
τ = 0.05 (10)

E.2 AQL: Adaptive Quantile Loss

MT-Bench Score: 7.953

def adaptive_quantile_loss(
self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,

24

reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
percentile = 0.5 # Start with the median quantile
moving_quantile_weight = 0.01 # Weight for updating the moving
quantile
pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios

moving_quantile = percentile + moving_quantile_weight * (torch.
sigmoid(logits.mean()) - percentile)

quantile_weights = torch.sigmoid(-self.beta * (logits -
moving_quantile))

logistic_losses = -F.logsigmoid(self.beta * logits)
hinge_losses = torch.relu(1 - self.beta * logits)

Blend the logistic and hinge losses based on the dynamic
quantile weight
losses = quantile_weights * logistic_losses + (1 -
quantile_weights) * hinge_losses
return losses

faql(βρ) = q · fdpo(βρ) + (1− q) · fslic(βρ) (11)
q = σ(τm2 − βρ) (12)

m2 = 0.5 + 0.01 ·
(
E[σ(βρ/τ)]− 0.5

)
(13)

τ = 0.05 (14)

E.3 PADLL: Performance Adaptive Decay Logistic Loss

MT-Bench Score: 7.941

def performance_adaptive_decay_logistic_loss(
self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
base_decay = 0.9
mismatch_penalty = 0.5 # Penalty decay for mismatched choices

pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios
mismatches = (logits < 0).float () # Identify mismatches

adaptive_decay = base_decay * (1 - mismatches * mismatch_penalty)
weighted_losses = adaptive_decay * -F.logsigmoid(self.beta *
logits)
return weighted_losses

fpadll(βρ) = δadpt · fdpo(βρ) (15)

= δbase ·
(
1− 1[ρ<0] · τ

)
· fdpo(βρ) (16)

= δbase ·
(
1− 1[ρ<0] · τ

)
· log

(
1 + exp(−βρ)

)
(17)

= 0.9 ·
(
1− 1[ρ<0] · 0.5

)
· log

(
1 + exp(−βρ)

)
(18)

25

This loss can also be rewritten as:

fpadll(β, ρ) =

{
δpos · fdpo(βρ), if ρ ≥ 0

δneg · fdpo(βρ), if ρ < 0
, where δpos > δneg > 0 (19)

E.4 AQFL: Adaptive Quantile Feedback Loss

MT-Bench Score: 7.931

def adaptive_quantile_feedback_loss(
self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
import torch.nn.functional as F

quantile_update_rate = 0.05
distance_scale = 0.1

pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios
logits_std = logits.std()

adaptive_quantile = logits_std * torch.sigmoid(-logits).mean()
adaptive_quantile += quantile_update_rate * (torch.sigmoid(logits.
mean()) - adaptive_quantile)

distance_from_quantile = (logits - adaptive_quantile).abs()
blend_rate = torch.sigmoid(distance_scale * distance_from_quantile
)

logistic_losses = -F.logsigmoid(self.beta * logits)
hinge_losses = torch.relu(1 - self.beta * logits)

losses = blend_rate * logistic_losses + (1 - blend_rate) *
hinge_losses
return losses

faqfl(βρ) = r · fdpo(βρ) + (1− r) · fslic(βρ) (20)
r = σ(0.1 ∗ d) (21)
d = |βρ/τ −m2| (22)

m2 = m1 + 0.05 ·
(
σ(E[βρ/τ]−m1)

)
(23)

m1 = E[σ(−βρ/τ)] ·
√
Var[βρ/τ] (24)

τ = 0.05 (25)

E.5 CELL: Combined Exponential + Logistic Loss

MT-Bench Score: 7.925

def combined_exp_logistic_loss(
self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:

26

pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios
exp_losses = torch.exp(-self.beta * logits)
log_losses = -F.logsigmoid(self.beta * logits)
Combine the losses with a tunable mixing coefficient
alpha = 0.5
losses = alpha * exp_losses + (1 - alpha) * log_losses
return losses

fcell(βρ) = 0.5 · fdpo(βρ) + 0.5 · fexp(βρ) (26)

E.6 LRML: Log Ratio Modulated Loss

MT-Bench Score: 7.916

def log_ratio_modulated_loss(
self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios
Modulate the mixing coefficient based on the log ratio
magnitudes
log_ratio_modulation = torch.sigmoid(logits)
logistic_component = -F.logsigmoid(self.beta * logits)
exp_component = torch.exp(-self.beta * logits)
Blend between logistic and exponential component based on log
ratio modulation
losses = logistic_component * (1 - log_ratio_modulation) +
exp_component * log_ratio_modulation
return losses

flrml(βρ) = (1− σ(βρ/τ)) · fdpo(βρ) + σ(βρ/τ) · fexp(−βρ) (27)
τ = 0.05 (28)

E.7 PFL: Policy Focused Loss

MT-Bench Score: 7.900

def policy_focused_loss(
self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
focus_scale = 2.0 # Scale to emphasize or de-emphasize based on
the correctness of predictions

pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios
is_correct = policy_chosen_logps > policy_rejected_logps

logistic_losses = -F.logsigmoid(logits)

27

hinge_losses = torch.relu(1 - logits)

focused_loss = torch.where(
is_correct ,
logistic_losses / focus_scale , # De -emphasize correct

predictions
hinge_losses * focus_scale # Emphasize incorrect predictions

)
return focused_loss

Interestingly, the PFL generated function code did not include any β values in the loss function.
We have added it to the corrected code for the IMDb experiment, as well as to the mathematical
expression below. We account for the consistency of the logit values by dividing with τ = 0.05,
which is the same value as β in the discovery process.

fpfl(βρ) = 1/2 · fdpo(βρ/τ) · 1[πw>πr] + 2 · fslic(βρ/τ) · 1[πw≤πr] (29)

τ = 0.05 (30)

F Full Run Log

We provide a full run below, formatted for readability.

==========
thought
Since the logistic log loss currently has the highest fitness and is a

direct optimization of the log likelihood ratio , let ’s try a
variation that includes a margin in the log likelihood ratios ,
inspired by the concept of a margin in SVM hinge loss. Introducing
a margin could create a buffer that leads to more robust learning

, as seen in SVMs.
name
logistic_margin_loss
code
def logistic_margin_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
margin = 0.1
pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits_with_margin = pi_logratios - ref_logratios - margin
losses = -F.logsigmoid(self.beta * logits_with_margin)
return losses

==========
Fitness: 7.709375.
Please generate the next one.
==========
thought
The logistic margin loss outperformed the hinge and ipo losses but did

not surpass the original logistic log loss. Perhaps introducing
an adaptive margin based on the confidence in the predictions
could yield improvements. The margin could be set proportional to
the absolute difference between the policy ’s and the reference ’s
log probabilities. This could potentially penalize incorrect
confident predictions more heavily.

name
adaptive_margin_logistic_loss

28

code
def adaptive_margin_logistic_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
confidence_margin = torch.abs(policy_chosen_logps -
policy_rejected_logps) - torch.abs(reference_chosen_logps -
reference_rejected_logps)
pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits_with_margin = pi_logratios - ref_logratios -
confidence_margin
losses = -F.logsigmoid(self.beta * logits_with_margin)
return losses

==========
Fitness: 7.51875.
Please generate the next one.
==========
thought
The adaptive margin did not yield an improvement. It might have

introduced too much variability or penalization. Let ’s go back to
a fixed structure but combine elements from both logistic loss and
hinge loss , with the idea of encouraging a larger margin when the
decision is correct , while still having a soft , probabilistic

interpretation. This combined loss could retain the benefits of
both worlds.

name
combined_logistic_hinge_loss
code
def combined_logistic_hinge_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios
logistic_losses = -F.logsigmoid(self.beta * logits)
hinge_losses = torch.relu(1 - self.beta * logits)
combined_losses = logistic_losses + hinge_losses
return combined_losses

==========
Fitness: 7.7375.
Please generate the next one.
==========
thought
The combined logistic and hinge loss slightly outperformed the

baseline logistic log loss but still did not achieve a significant
improvement. Considering the nature of RLHF , where we prefer the

model to be correct but not overly confident , we can explore a
scaled version of the combined loss where the logistic part is
emphasized more heavily , as it intrinsically accounts for
confidence due to its probabilistic nature.

name
scaled_combined_logistic_hinge_loss
code
def scaled_combined_logistic_hinge_loss(

self ,

29

policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
logistic_scale = 2.0 # Emphasize logistic loss more
hinge_scale = 0.5 # De-emphasize hinge loss

pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios

logistic_losses = logistic_scale * (-F.logsigmoid(self.beta *
logits))
hinge_losses = hinge_scale * (torch.relu(1 - self.beta * logits))

combined_losses = logistic_losses + hinge_losses
return combined_losses

==========
Fitness: 7.85625.
Please generate the next one.
==========
thought
The scaled combined loss has shown an improvement , which indicates

that balancing the contribution between the logistic and hinge
components is beneficial. To further expand on this idea , we could
try a form of annealing where early in training we use more of

the logistic component , encouraging better probability estimation ,
and later on a switch gradually to the hinge component ,

emphasizing decisions with a margin. We ’ll simulate this by using
a weighting factor that changes linearly through the logits ,
giving lower logits (earlier , less confident predictions) a higher
weight for the logistic loss.

name
annealed_combined_logistic_hinge_loss
code
def annealed_combined_logistic_hinge_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios

logistic_scale = torch.sigmoid(-logits) # Higher weight for lower
logits
hinge_scale = torch.sigmoid(logits) # Higher weight for
higher logits

logistic_losses = logistic_scale * (-F.logsigmoid(self.beta *
logits))
hinge_losses = hinge_scale * (torch.relu(1 - self.beta * logits))

combined_losses = logistic_losses + hinge_losses
return combined_losses

==========
Fitness: 7.66875.
Please generate the next one.
==========
thought

30

The annealed combined loss did not yield the expected improvement and
performed worse than the scaled version. It’s possible the
transition from logistic to hinge was too aggressive. For the next
iteration , let ’s return to a simpler concept and try a variation

of the logistic loss with a squared term , similar to squared hinge
loss , which might penalize incorrect predictions more smoothly

than the linear term used in the standard logistic loss.
name
squared_logistic_loss
code
def squared_logistic_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios
logistic_losses = -F.logsigmoid(self.beta * logits)
squared_losses = logistic_losses ** 2
return squared_losses

==========
Fitness: 7.60062893081761.
Please generate the next one.
==========
thought
The squared logistic loss did not perform as well as hoped , possibly

due to excessive penalization of difficult samples. This time , let
’s integrate a weighting mechanism that focuses on hard examples
while using the logistic component. Inspired by the focal loss
used in object detection , which gives more weight to harder ,
misclassified examples , we can apply a similar mechanism to
emphasize learning from examples where the policy significantly
differs from the reference.

name
focal_logistic_loss
code
def focal_logistic_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
gamma = 2.0 # Focusing parameter for modulating the loss
pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios
sigmoids = F.sigmoid(logits)
focal_weights = (1 - sigmoids) ** gamma # Focus more on harder
examples
logistic_losses = -focal_weights * F.logsigmoid(self.beta * logits
)
return logistic_losses

==========
Fitness: 7.840625.
Please generate the next one.
==========
thought
The focal logistic loss seems to have a moderate effect , indicating

that prioritizing hard examples has some merit. To build on this ,

31

an alternative could be to apply temperature scaling to the logits
before computing the logistic loss. Temperature scaling is often

used in model calibration and can soften the probability
distribution , which might work well with RLHF where overconfidence
in predictions is undesirable.

name
temperature_scaled_logistic_loss
code
def temperature_scaled_logistic_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
temperature = 2.0 # Temperature > 1.0 softens the logits
pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
tempered_logits = (pi_logratios - ref_logratios) / temperature
logistic_losses = -F.logsigmoid(self.beta * tempered_logits)
return logistic_losses

==========
Fitness: 7.86875.
Please generate the next one.
==========
thought
The temperature scaling seemed to have a positive impact , possibly due

to better -calibrated probability estimates. To further explore
this direction , we can try using label smoothing , which encourages
the model not to be too confident about its predictions by

preventing it from assigning full probability to a single class.
It ’s a technique commonly used in classification tasks and might
be beneficial for RLHF.

name
label_smoothed_logistic_loss
code
def label_smoothed_logistic_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
label_smoothing = 0.1 # Epsilon for label smoothing
pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios
smooth_positive = 1.0 - label_smoothing
smooth_negative = label_smoothing / 2.0
targets = torch.ones_like(logits) * smooth_positive
losses = F.binary_cross_entropy_with_logits(

self.beta * logits , targets , reduction=’none ’
) + smooth_negative * F.binary_cross_entropy_with_logits(

-self.beta * logits , torch.zeros_like(logits), reduction=’none
’
)
return losses.mean()

==========
Code not valid. Error:
Expected loss shape to be per input (e.g. (10,)), got torch.Size ([])
Please generate the next one.
==========
thought

32

Since the label smoothing implementation had an issue with the loss
shape being incorrect , it seems the loss reduction was erroneously
computed over all inputs instead of keeping the per -input format.
Let ’s adjust the implementation to make sure the loss retains the
correct shape , by performing the mean operation separately for

the positive and negative parts and then combining them , weighted
appropriately.

name
corrected_label_smoothed_logistic_loss
code
def corrected_label_smoothed_logistic_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
label_smoothing = 0.1 # Epsilon for label smoothing
pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios
smooth_positive = 1.0 - label_smoothing
smooth_negative = label_smoothing / 2.0
positive_targets = torch.ones_like(logits) * smooth_positive
negative_targets = torch.zeros_like(logits) * smooth_negative
positive_losses = F.binary_cross_entropy_with_logits(

self.beta * logits , positive_targets , reduction=’none ’
)
negative_losses = F.binary_cross_entropy_with_logits(

self.beta * logits , negative_targets , reduction=’none ’
)
return (positive_losses + negative_losses) / 2

==========
Fitness: 6.425.
Please generate the next one.
==========
thought
The corrected label smoothing implementation didn ’t work as intended

and significantly decreased the fitness. It seems that label
smoothing may not align well with the objective of RLHF. In light
of this , let ’s explore a different direction by introducing a
decaying weight on older samples. The idea is to give higher
importance to the more recent decisions made by the policy , under
the assumption that they may be more aligned with the current
state of the policy.

name
decaying_weights_logistic_loss
code
def decaying_weights_logistic_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
decay_rate = 0.9 # Weight decay for older samples
batch_size = policy_chosen_logps.size (0)
decay_weights = decay_rate ** torch.arange(batch_size - 1, -1, -1)
decay_weights = decay_weights.to(policy_chosen_logps.device)

pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios
losses = decay_weights * -F.logsigmoid(self.beta * logits)

33

return losses / decay_weights.sum() # Normalizing by sum of
weights

==========
Fitness: 7.871875.
Please generate the next one.
==========
thought
While the decaying weights logistic loss provided a slight increase in

fitness , it suggests that emphasizing more recent samples can be
beneficial , but the approach might need some refinement. We could
potentially improve this by making the decay adaptive based on the
performance of each choice. The idea would be to give less weight
to choices that are heavily mismatched with the reference , under

the hypothesis that these could be outliers or errors.
name
performance_adaptive_decay_logistic_loss
code
def performance_adaptive_decay_logistic_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
base_decay = 0.9
mismatch_penalty = 0.5 # Penalty decay for mismatched choices

pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios
mismatches = (logits < 0).float () # Identify mismatches

adaptive_decay = base_decay * (1 - mismatches * mismatch_penalty)
weighted_losses = adaptive_decay * -F.logsigmoid(self.beta *
logits)
return weighted_losses

==========
Fitness: 7.940625.
Please generate the next one.
==========
thought
The performance -adaptive decay approach provided a slight improvement

in fitness , suggesting that dynamically adjusting the loss based
on the correctness of predictions is a promising direction. To
take this further , let ’s create a hybrid approach which combines
the performance -adaptive decay with a form of margin -based loss.
This will aim to reduce the weights of not only the incorrect
predictions but also those that are correct yet lack confidence ,
thereby promoting a more decisive policy.

name
hybrid_performance_margin_decay_logistic_loss
code
def hybrid_performance_margin_decay_logistic_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
base_decay = 0.9
margin = 0.2
mismatch_penalty = 0.5 # Penalty decay for mismatched choices

34

pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - ref_logratios
margin_logits = logits - margin
mismatches = (margin_logits < 0).float() # Identify mismatches
with margin

adaptive_decay = base_decay * (1 - mismatches * mismatch_penalty)
weighted_losses = adaptive_decay * -F.logsigmoid(self.beta *
margin_logits)
return weighted_losses

==========
Fitness: 7.6125.
Please generate the next one.
==========
thought
The hybrid approach with the performance margin decay did not achieve

the desired effectiveness. Introducing a margin may have been too
punitive on correct predictions that are close to the boundary. To
maintain the balance , let ’s explore the idea of using a triplet -

style loss , which is popular in embedding learning. By treating
the chosen policy logs as the anchor and the reference chosen and
rejected logs as positive and negative examples , respectively , we
can encourage the chosen policy decisions to be closer to the
reference chosen decisions and farther away from the reference
rejected decisions.

name
triplet_style_logistic_loss
code
def triplet_style_logistic_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
alpha = 0.1 # Margin for the triplet loss
positive_distance = -F.logsigmoid(self.beta * (policy_chosen_logps
- reference_chosen_logps))
negative_distance = -F.logsigmoid(self.beta * (policy_chosen_logps
- reference_rejected_logps))
triplet_loss = F.relu(positive_distance - negative_distance +
alpha)
return triplet_loss

==========
Code not valid. Error:
isnan(): argument ’input ’ (position 1) must be Tensor , not NoneType
Please generate the next one.
==========
thought
It seems there was an error in the triplet -style loss function , which

suggests that the computation may have been incorrect or
incomplete. To correct this , we need to ensure that all
intermediate steps yield non -empty tensors. Triplet loss can still
be a useful approach as it inherently contains the concept of a

margin while allowing for a dynamic balance between the chosen and
rejected log probabilities. Let ’s revise the code with added

checks to prevent any NoneType issues and ensure that the loss is
computed correctly.

name
revised_triplet_style_logistic_loss
code
def revised_triplet_style_logistic_loss(

35

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
alpha = 0.1 # Margin for the triplet loss
Compute distances
positive_distance = policy_chosen_logps - reference_chosen_logps
negative_distance = policy_chosen_logps - reference_rejected_logps
Calculate the triplet loss
triplet_loss = F.relu(positive_distance - negative_distance +
alpha)
Convert triplet loss into a logistic -style loss
logistic_triplet_loss = -F.logsigmoid(self.beta * triplet_loss)

return logistic_triplet_loss.mean() # Ensure the loss is averaged

==========
Code not valid. Error:
Expected loss shape to be per input (e.g. (10,)), got torch.Size ([])
Please generate the next one.
==========
thought
The revised triplet -style logistic loss still encountered an issue ,

likely due to improper application of the operations and reduction
at the end , which should be on a per -example basis. Triplet loss

typically works with distances embedded in a space , and here we
are dealing with log probabilities , so the direct application may
not be correct. For the next attempt , let ’s simplify: we’ll
reinforce the relationship between the chosen and rejected log
probabilities directly by using their difference , promoting a
wider margin while still within the logistic loss framework.

name
reinforced_margin_logistic_loss
code
def reinforced_margin_logistic_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
margin = 0.1 # Margin introduced for reinforcing the difference
Calculate log probability differences
chosen_difference = policy_chosen_logps - reference_chosen_logps
rejected_difference = policy_rejected_logps -
reference_rejected_logps
Apply the margin to differences
reinforced_chosen = F.relu(chosen_difference + margin)
reinforced_rejected = F.relu(rejected_difference - margin)
Compute logistic losses with reinforced margins
losses = -F.logsigmoid(self.beta * reinforced_chosen) - F.
logsigmoid(-self.beta * reinforced_rejected)
return losses.mean (0) # Maintain loss shape as per input

==========
Code not valid. Error:
Expected loss shape to be per input (e.g. (10,)), got torch.Size ([])
Please generate the next one.
==========
thought
There was an error in the implementation of the reinforced margin

logistic loss , likely because the mean operation was again placed
incorrectly. The loss should be returned without any aggregation

36

to maintain the per -input structure. Keeping this in mind , we need
to correctly apply a margin to reinforce the separation between

policy decisions and reference decisions.
name
corrected_reinforced_margin_logistic_loss
code
def corrected_reinforced_margin_logistic_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
margin = 0.1 # Margin for reinforcing the separation
Calculate log probability differences
chosen_difference = policy_chosen_logps - reference_chosen_logps
rejected_difference = policy_rejected_logps -
reference_rejected_logps
Reinforce chosen logits by adding a margin
reinforced_chosen = chosen_difference + margin
Reinforce rejected logits by subtracting a margin
reinforced_rejected = rejected_difference - margin
Compute logistic losses for reinforced logits
chosen_losses = -F.logsigmoid(self.beta * reinforced_chosen)
rejected_losses = -F.logsigmoid(-self.beta * reinforced_rejected)
Combine losses without applying mean
return chosen_losses + rejected_losses

==========
Fitness: 7.525.
Please generate the next one.
==========
thought
The approach of applying a static margin did not yield the expected

improvements. It ’s worth considering a different perspective;
instead of focusing on introducing margins or applying decays , let
’s attempt to directly optimize the policy ’s certainty.
Intuitively , the policy should be more confident when choosing
actions similar to the reference and less confident otherwise. A
potential approach would be to scale the logistic loss by the
absolute difference between the policy ’s choice and the reference
choice , thus directly tying the loss to the policy ’s certainty in
its decision.

name
certainty_scaled_logistic_loss
code
def certainty_scaled_logistic_loss(

self ,
policy_chosen_logps: torch.FloatTensor ,
policy_rejected_logps: torch.FloatTensor ,
reference_chosen_logps: torch.FloatTensor ,
reference_rejected_logps: torch.FloatTensor ,

) -> torch.FloatTensor:
Compute the absolute certainty differences
chosen_certainty_diff = torch.abs(policy_chosen_logps -
reference_chosen_logps)
rejected_certainty_diff = torch.abs(policy_rejected_logps -
reference_rejected_logps)
Calculate the mean certainty difference
mean_certainty_diff = (chosen_certainty_diff +
rejected_certainty_diff) / 2
Compute the logistic loss
losses = -F.logsigmoid(self.beta * (policy_chosen_logps -
policy_rejected_logps))
Scale the loss by the certainty difference

37

certainty_scaled_losses = losses * mean_certainty_diff
return certainty_scaled_losses

==========
Fitness: 7.33125.
Please generate the next one.

38

