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Abstract

Deep learning models have found widespread use in the machine learn-

ing community recently given their state-of-the-art performance on

a range of interesting problems. They can however return a wrong

answer with high confidence and little way for the practitioner to un-

derstand how the model has come to that conclusion. In this project

we will explore attempts to fit deep learning models into a Bayesian

framework, thereby making clear uncertainty in predictions. We will

consider how useful a number of these methods are as well as ulti-

mately improving the flexibility of one of the approximations (known

as Monte Carlo Dropout) by incorporating the dropout rate as a pa-

rameter of a variational distribution to be optimised.
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Chapter 1

Introduction

“The beginning is the most

important part of the work.”

Plato

1.1 Motivations - Understanding Uncertainty

Accurate uncertainty estimates are vitally important for any form of data anal-

ysis. Given a model that makes some prediction based on an input we should

be very interested in how confident the model is that it has returned the correct

answer. This is of most importance when the model is very uncertain - we may

not want to act on such a prediction and instead explore the case more. This

problem is magnified when decisions based on the output of the model have se-

rious consequences. Deep learning models (neural networks) [Goodfellow et al.,

2016] have recently found great use in a number of high impact fields including

medical diagnostics and autonomous vehicles [Litjens et al., 2017] but if a model

returns that a patient has cancer you want to be sure about it before starting

chemotherapy. The structure of neural networks makes the task of understanding
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1.1 Motivations - Understanding Uncertainty

why an input has produced a particular output especially hard. In simple mod-

els like linear regression parameters correspond linearly to some specific covariate

and it is easy to see how slightly changing that part of the input results in the the

output changing. In neural networks there is no such intuition about individual

parameters as they all interconnect in a manner too complicated for people to

usually grasp.

Traditionally in statistics this problem is dealt with from the Bayesian point

of view by considering any parameters in a model to be random variables. These

parameters are given an explicit prior distribution and when new data is seen

their posterior distribution given the data can be calculated. With information

about the posterior distribution of the parameters of the model comes the predic-

tive distribution of any output from the model, and knowing about the predictive

distribution tells us how uncertain the model is. For example a predictive dis-

tribution with high variance means the model thinks there are quite a lot of

plausible possible values for the prediction and any particular value will have low

relative probability density. This has the added benefit of taking into account

any uncertainty in the generative process of the data as well.

In deep neural networks this task becomes very complicated as the number of

parameters can often run well into the thousands and often for very complicated

models into the millions. To perform Bayesian inference this will end up requiring

the calculation of integrals in the dimension of those parameters and will soon

become completely intractable. There is then a pressing need for scalable and

efficient methods to perform approximate Bayesian inference to get uncertainty

information as close to the true underlying uncertainty as possible. In this report

we will explore a number of the proposed solutions.

2



1.2 Objectives

1.2 Objectives

This report will document my STAT0035 Project and as such we have three main

objectives:

1. Become familiar with the current literature on Bayesian deep learning.

2. Implement and compare the effectiveness of modern methods for evaluating

the posterior distribution in neural networks.

3. Take one of the current approximate methods and try to improve it by

making it more flexible. In particular we will look at MC Dropout and how

we can optimise the dropout rate.

This report then will address these objectives and aim to bring the reader up

to date with recent work on Bayesian deep learning, assuming only undergraduate

level statistics knowledge. Then it will detail our original work in both comparing

the effectiveness of some of these methods and deriving a more flexible method.

1.3 Contributions and Overview of the Report

In order to achieve our objectives, after this introduction, in Chapter 2 we

will discuss all the relevant background knowledge that will be needed for the

rest of the report, covering mainly the topics of machine learning and modern

computational methods for performing Bayesian inference in complex and high-

dimensional problems. Having done the ground work we will move on in Chapter

3 to look at the modern literature on Bayesian deep learning. We will look at

how these models where introduced as well as contemporary methods used to ef-

ficiently fit approximations to the posterior distributions since the size of neural

networks makes exact inference analytically intractable. Then we will move to

3



1.3 Contributions and Overview of the Report

Chapter 4 where we will discuss the more practical aspects of our work, imple-

menting a number of the algorithms and discussing how they behave compara-

tively. We will also derive and implement a new method for incorporating and

optimising the dropout rate in an approximation to Bayesian inference, thereby

making the approximation more flexible and accurate. Having done this we will

conclude in Chapter 5 by discussing how our results can be interpreted as well as

summarising the work of the project.

All graphics in this report were produced by me. Additionally, all code used

in either experiments or for visualisation purposes was written by me as well, only

really relying on the automatic differentiation package Autograd. That is to say

I coded the models and algorithms myself from the ground up without relying on

packages such as Keras to implement neural network layers or PyMC3 to sample

Markov chains. Please see Appendix A for further details.
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Chapter 2

Background

“A computer program is said to

learn from experience E with some

class of tasks T and performance

measure P if its performance at

tasks in T, as measured by P,

improves with experience E.”

Tom M. Mitchell

Summary

In this chapter we will cover and discuss the essential background material that

is required to understand the current literature on probabilistic deep learning

and not covered on the BSc Statistics degree program. We will first go over the

general machine learning paradigm before looking specifically at neural network

models. Then we’ll go on to methods to train these models, firstly via determinis-

tic optimisation, and then by considering the parameters as random variables and

updating them by Bayes rule. Finally we’ll look at the modern computational
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2.1 Machine Learning

methods for evaluating the often analytically intractable posterior distributions

obtained as well as briefly covering non-parametric models. For each of the top-

ics there are many resources available that repeat the same thing but key results

quoted in this chapter can be considered taken from the textbook by Barber

[2012] unless otherwise stated.

2.1 Machine Learning

Machine learning is a sub-field of statistics and computer science that specifically

deals with algorithms that improve in capability as more information is given

to them. As with statistical inference the goal is to use the available data to

deduce the properties of some underlying population or process. With recent

great increases in computing power and available data, machine learning has

proven itself an immensely powerful tool in a number of areas including medical

diagnosis, autonomous vehicles and cyber security [Kononenko, 2001]. Machine

learning covers a wide range of very different algorithms but can be broadly split

into three groups: supervised, unsupervised, and reinforcement learning. We will

only really concern ourselves with first of these but I shall very briefly discuss the

other two as well.

2.1.1 Supervised Learning

In supervised learning we consider the general paradigm where we have a set of

n observation tuples, {(xi, yi)}ni=1 where x and y are input and output vectors

respectively, elements of some potentially both high and different dimensional

spaces, X and Y . Typically supervised learning is divided into two further groups:

regression, and classification. In regression the output is considered to be a real

valued vector while in classification the output is a category. The task is to learn

6



2.1 Machine Learning

the mapping g : X → Y so that given new inputs we can accurately determine

the output value. The space of all possible functions is impractically large so we

tend to constrain them considerably (for example, in linear regression we consider

only functions that are a linear combination of the input) and make our guess,

f(x, θ) where θ is some free parameter(s) that we can change in order that our

function is as close to the real g as possible.

In order to get close to g, we define a cost function C(θ) that based on our

data tells us something about the “distance” from g. We can then change θ so

that C(θ) is minimised. The choice of cost function can have a big impact on the

capability of the model, and it is important that it is chosen wisely. For regression

problems the most common choice is the least squares loss while in classification,

functions such as the cross entropy loss have been more popular [Zhang, 2000].

Both of these though can be interpreted as some form of likelihood loss in a

probabilistic context.

We will discuss in a later section exactly how we minimise the cost function as

the same optimisation techniques can be used in more general scenarios outside

of supervised learning.

2.1.2 Unsupervised Learning

Unsupervised learning considers the alternate scenario when we have a set of

n observations, {xi}ni=1 but this time of only input vectors. Instead of trying

to learn some output mapping we try to learn some underlying pattern in the

data. Typical tasks include dimensionality reduction, clustering, and generative

models.

7



2.2 Deep Neural Networks

2.1.3 Reinforcement Learning

In reinforcement learning we have an agent (the machine learning program) and

the environment, the idea being for the agent to learn about the environment by

trial and error. At each stage the agent is shown the state of the environment

and is presented with a choice of actions. The agent takes an action and then

receives a reward signal that says how good the state of the environment is now

the action has been taken, with the goal of the agent to maximise this long

term reward. Reinforcement learning has been recently popularised by Google

DeepMind, where their Alpha series of algorithms have had great success on a

variety of tasks that people did not expect computers to be able to handle, from

Go and Atari games to more recent protein folding predictions. [Silver et al.,

2017] [Evans et al., 2018]

2.2 Deep Neural Networks

The focus of this project is the neural network (NN), a particular type of model

that has been shown to perform extremely well on tasks for which it is often hard

to describe rules such as speech and handwriting recognition [Bishop et al., 1995].

We will focus on the most common type, the multilayer perceptron (MLP), for

which the Universal Approximation Theorem [Hornik, 1991] says that a suitably

large NN can approximate any given function. Since that is the whole goal of

supervised learning it would seem they are a very powerful and useful model

indeed.

There are however some significant drawbacks. While theoretically any func-

tion can be achieved it may be that the architecture of the NN is infeasibly big

and the NN fails to learn or generalise correctly. Additionally NNs require large

amounts of both data and training time in order to be accurate, which may mean

8



2.2 Deep Neural Networks

a simpler algorithm could give you “good enough” results at a fraction of the

computational cost.

2.2.1 The Perceptron and MLPs

The initial basic building block for all deep learning is a model called the percep-

tron [Rosenblatt, 1962]. Inspired by neurons in the brain, the perceptron takes

in a weighted sum of inputs, adds a bias (in this context a constant value that

relates to how easy it is for the neuron to fire) and then outputs some non-linear

transformation of this total (we shall call this transformation the activation func-

tion) as shown in Figure 2.1. Originally this non-linearity was taken to be a

step function outputting a one or a zero (since neurons in the brain either fire

or don’t, there is no gradation) but since this is discontinuous it causes problems

when evaluating the gradient and so we now make “softer” choices such as the

sigmoid function. This function, defined as s(x) = (1+exp(−x))−1, is monotonic

and takes any real value and output a number between zero and one, making it

act like a smooth step function. It is also differentiable, which we will see later

is very important. Technically the model is only a perceptron as presented by

Rosenblatt when using the step function, though we shall call any model of this

design with various activation functions a perceptron or neuron.

Modern deep neural networks are all essentially MLPs, which consist of a

number of perceptrons arranged in layers. In a given layer each individual per-

ceptron takes as input the output of all the perceptrons in the previous layer and

its outputs will in turn be taken as input for the following layer. There will be an

input layer and an output layer as well as at least one hidden layer in between,

as in Figure 2.2. The “deep” part of deep learning refers to these hidden layers

and modern NNs often have a very large number of hidden layers.

Now that we understand the idea we must consider how the model will be

9



2.2 Deep Neural Networks

Figure 2.1: A visual representation of a perceptron.

Figure 2.2: A very simple single hidden layer network, in this graph each node
represents a single perceptron and each directed edge represents the flow of out-
puts to inputs.

10



2.2 Deep Neural Networks

numerically implemented. We will denote alj as the activation (a.k.a. the output)

and blj as the bias of the jth neuron in layer l. Additionally, wljk as the weight

of the activation of the kth neuron in layer (l− 1) as input for the jth neuron of

layer l. The subscripts for the weights may seem backwards but they simplify the

notation later. Given some activation function σ : R → R we can clearly write

the activations in one layer as a function of the activations in the previous layer:

alj = σ
(∑

k

wljka
l−1
k + blj

)
. (2.1)

In order to write this in matrix algebra, for every layer l we define a weight

matrix, wl, which is simply constructed by setting the element in the jth row and

kth column of wl as wljk. Additionally we set al and bl to be vectors containing

the activations and biases of the lth layer. Now equation 2.1 becomes:

al = σ
(
wlal−1 + bl

)
, (2.2)

where σ is applied elementwise. We now have a very clear way to implement

a NN, for each layer multiply the input by a weight matrix, add a bias vector,

apply an elementwise function, and repeat for the next layer. We thus have a

very flexible class of functions parameterised by a set of weight matrices and bias

vectors.

2.2.2 Backpropagation

Now we have defined the model we must consider the gradient of the cost function,

∇C, with respect to the parameters of the model. For a long time after NNs were

first proposed this was a significant problem given the vast number of parameters

in the model and it wasn’t until the introduction of the backpropagation algorithm

[Rumelhart et al., 1986] and advances in CPU speeds that NNs became viable

11



2.2 Deep Neural Networks

for interesting tasks.

Backpropagation is actually a specific example of reverse-mode automatic

differentiation, a computational method to get the exact derivative of a function

composed of any number of themselves differentiable functions and does not rely

on any approximations through the construction of a computational graph and

use of the chain rule. Backpropagation works by calculating an error at the end of

the network and then propagating it backwards though the network to calculate

the gradient of each weight with respect to this error. Importantly this only takes

time in the order of a forward pass through the network to get the gradient of

every weight and as such is much quicker than numerical methods that require

that amount of time for every individual weight.

2.2.3 Regularisation

Neural networks have a lot of parameters and as such are very prone to over-

fitting, that is to say they may approximate the function very well on the training

data but fail to generalise well to new data as the NN is learning a very specific

map on the training set that does not reflect any overall pattern true to the

data and only occurs by chance. To combat this, regularisation is applied to

the model where some form of constraint is placed on the parameters so that

they cannot fit extremely specific functions and are therefore encouraged to find

more general patterns. The most common forms in NNs (and indeed supervised

learning in general) are L1 and L2 regularisation which add a penalty to the

cost function proportional to the L1 or L2 norm of the parameters respectively.

This directly relates to examples in traditional statistics when performing lasso

or ridge regression respectively. It is not always clear though exactly what sort of

regularisation is needed so techniques such as cross-validation (where by you split

the data multiple times, for each split fitting a model on one part and testing the

12



2.3 Optimisation

fit on the other part) can be used to see how much models over-fit the data and

see what the optimal level of regularisation is.

2.3 Optimisation

We will consider the general scenario where we have some function C : Rn →

R that takes some n dimensional input vector, θ, and outputs a real number.

The task is to select θ such that the value of C(θ) is minimised, equivalent to

maximising −C(θ).

Basic calculus tells us that we reach a stationary point when the gradient of

the function with respect to the input is zero. Thus we may naively try to simply

solve the equation: ∇C(θ) = 0. However we often run into the problem that this

equation has no closed form solution, to get around this problem we must often

resort to iterative methods.

2.3.1 Gradient Descent and SGD

The idea behind gradient descent is quite simple; given a starting position we

take a small step in the direction of steepest descent and repeat until convergence

[Bottou, 2010]. We do this by at each step evaluating the gradient of C at the

current position and then updating the position by taking away a multiple of the

gradient from the current position as in algorithm 1. This will usually take us to

a local minimum but we cannot guarantee a global minimum.

There are still some limitations to gradient descent that need to be overcome.

Data sets these days can be incredibly large and it can be very computationally

expensive to evaluate ∇C over the entire data set. Stochastic Gradient Descent

(SGD) is designed to overcome this problem as at each step instead of evaluating

the gradient over the entire data set we select a random, much smaller, subset

13



2.3 Optimisation

Algorithm 1: Gradient Descent

Result: Optimised parameter θ
Require : λ (Step size);
Require : θ0 (Initial starting point);
t← 0 (Initialise timestep);
while θt not converged do

t← t+ 1;
θt ← θt−1 − λ∇C(θt−1);

end
return θt (Resulting parameters)

of the data (known as a minibatch) and evaluate the gradient over that instead

(∇Cminibatch). The key point here is that the cost functions are chosen so that

the expectation of ∇Cminibatch is equal to ∇C so that in the long run the average

direction of the steps should still take us to a minimum.

2.3.2 Adaptive Methods for Stochastic Optimisation

There are many cases that arise where the objective function to be optimised is

stochastic, as in SGD where it changes depending on the exact minibatch chosen.

In these cases taking a simple step in the direction of the gradient is not always

the best case as the estimators can exhibit very high variance and the parameters

may take a long time to converge if they do at all. To get over this a number

of extensions to gradient descent have been proposed including with momentum,

AdaGrad, and RMSProp [Ruder, 2016] that each take into account past behaviour

of the estimate when updating so as to make the trajectory smoother and not

be affected so much by extreme evaluations of the objective function. One of the

most popular is the algorithm Adam [Kingma & Ba, 2014], which updates the

parameter keeping track of running averages of both the gradient and the second

moments of the gradient, increasing the speed of convergence and decreasing the

likelihood of getting stuck in a local minimum or saddle point. Intuitively Adam is

14



2.4 Bayesian Inference

trying to get the benefits of second-order optimisation methods (those that make

use of second derivatives) without incurring the computational costs by looking at

how the estimates have behaved in the past and how they are currently changing.

Another important aspect is the step size, often it is kept constant but es-

pecially in the stochastic case it is important to adapt them. Robbins & Monro

[1951] show that when using step sizes εt that decrease with t and satisfy equations

2.3 that it guarantees convergence to a local minimum.

∞∑
t=1

εt =∞
∞∑
t=1

ε2t <∞ (2.3)

2.4 Bayesian Inference

Admittedly, Bayesian inference is covered in the statistics curriculum but it is

crucial for the project and so seems worth going over again here. We consider

it as an alternative way to determine the parameters of a model instead of the

traditional way of optimisation. The cornerstone of Bayesian inference is of course

Bayes theorem, which relates the conditional probabilities of two events, A and

B:

p(A|B) =
p(B|A)p(A)

p(B)
. (2.4)

We can extend this from the conditional probability of an event, A given B,

p(A|B) to consider the conditional distribution of some parameter, θ, given the

data, D. We also note that p(D) is not affected by the value of θ, meaning we

can just consider it as a normalising constant such that the resulting distribution

integrates to one, leaving us with:

p(θ|D) ∝ p(D|θ)p(θ). (2.5)
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2.4 Bayesian Inference

We can now see that our posterior belief about θ having seen D, p(θ|D) is propor-

tional to the likelihood of the data, p(D|θ) multiplied by our prior belief about θ,

p(θ). Crucially now once we decide on a prior distribution of θ all we have to do

is consider the likelihood of the data and multiply the two together before nor-

malising. In some simple models this can be done easily using what are known as

conjugate priors which ensure the posterior distribution of θ is in the same family

as the prior.

In complicated models however we often run into a few problems. For ex-

ample normalisation can be very tricky as we tend to try to evaluate p(D) =∫
p(D|θ)p(θ)dθ where the integral can be completely computationally intractable.

We thus usually with modern problems have to resort to other techniques in order

to evaluate the posterior which we shall cover in the next couple of sections.

2.4.1 Making Predictions

Having evaluated the posterior of the parameter of interest we will often be in-

terested in the distribution of a new observation x∗ which by the law of total

probability evaluates to:

p(x∗|D) =

∫
Θ

p(x∗|D, θ)p(θ|D)dθ, (2.6)

which we can numerically approximate as:

p(x∗|D) '
S∑
i=1

p(x∗|D, θ(i)), (2.7)

where we take S samples of θ(i) ∼ p(θ|D). Thus it is very useful for us to be able

to sample from the posterior distribution even if we can’t analytically evaluate

it.
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2.5 Markov Chain Monte Carlo

2.5 Markov Chain Monte Carlo

We have seen in Bayesian inference that we will often be interested in posterior

distributions of some form that are often intractable, as is the case in neural

networks. We therefore need some more sophisticated way of sampling other

than simple transformation methods. Markov chain Monte Carlo (MCMC) is

such a method where we would like to sample from a target distribution of the

form:

p(x) =
1

Z
p∗(x), (2.8)

where p∗(z) is some unnormalised distribution that we can evaluate and the cal-

culation of Z is intractable. The idea in MCMC is to simply sample from a

Markov chain that has p(x) as its stationary distribution.

2.5.1 Markov Chains

A Markov chain (MC) is a stochastic process; a sequence of random variables X1,

X2, X3... satisfying the Markov property:

p(xn+1|x1, x2, ..., xn) = p(xn+1|xn). (2.9)

That is to say that that the conditional distribution of Xn+1 is independent of

Xm ∀m < n given Xn. A time-homogeneous Markov chain is therefore completely

defined by a transition kernel q(x′|x) which defines a distribution on Xn+1 given

Xn ∀n. For any given kernel under certain conditions there exists a stationary

distribution, q∞(x′) such that the the following holds:

q∞(x′) =

∫
X

q(x′|x)q∞(x)dx. (2.10)
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2.5 Markov Chain Monte Carlo

Further if the chain is irreducible the distribution of Xn tends to q∞(x′) as n

tends to infinity. As such in MCMC given a target distribution p(x) we look for

a transition kernel which has stationary distribution q∞(x′) = p(x). There are

a number of different algorithms to do this and we will discuss a couple of the

important ones next.

2.5.2 The Metropolis-Hastings Algorithm

The first example of MCMC was the Metropolis-Hastings algorithm [Metropolis

et al., 1953] where we select a proposal distribution, q̃(x′|x) that is easy to sample

from. We then draw a sample from this distribution before deciding to accept the

proposed step with some probability. The acceptance probability is chosen so that

the resulting distribution is stationary with respect to p(x) and the derivation of

which I will omit. Looking at the acceptance probability:

p = max{1, q̃(xi−1|x′)p∗(x′)
q̃(x′|xi−1)p∗(xi−1)

},

we see that intuitively we are more likely to accept proposal steps that have higher

target density as is seen by the ratio but also for ones that it is more likely to go

in the reverse direction under the proposal distribution, helping the chain to not

get stuck in places.

This is a very simple and easy to implement algorithm and you can see an

example chain in Fig. 2.3. The problem is that when the target is complicated

and very high dimensional the sampler is often unable to rapidly explore the state

space and will take a very long time to converge to p(x).
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2.5 Markov Chain Monte Carlo

Figure 2.3: Left: A contour plot of a two-dimensional example target distri-
bution. Right: An example of a path of a random walk Metropolis-Hastings
sampler.

Algorithm 2: Hybrid Monte Carlo Sampler

Result: Samples x0,x1,x2,...,xN
Require : N (No. of samples);
Require : p(y) (Proposal distribution);
Require : x0 (Starting point);
Require : h (No. of Hamiltonian steps);
for i = 1 to N do

Draw sample y from p(y) ;
Choose random forward or backward direction;
From (xi−1, y) follow h Hamiltonian dynamics steps to reach proposal
(x′, y′);

Let a = exp(H(xi−1, y)−H(x′, y′));
Draw u from a Uniform(0,1) distribution;
if u < a then

xi = x′

else
xi = xi−1

end

end
return x0,x1,x2,...,xN
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2.5 Markov Chain Monte Carlo

2.5.3 Hybrid Monte Carlo

The idea behind Hybrid Monte Carlo (HMC) [Duane et al., 1988] [Brooks et al.,

2011], otherwise often known as Hamiltonian Monte Carlo, is to introduce an

auxiliary random variable Y and sample from the joint distribution p(x, y). Then

we can just consider the Xs as samples but take advantage of properties of Y to

allow the sample to make large non-local jumps and explore the state space more

rapidly. The main intuition here is to think of the joint variables as the energy

of some physical system, with the Xs representing the potential energy and the

Ys the kinetic energy or momentum. We consider targets of the form:

p(x) =
1

ZX
eU(x), (2.11)

and define our distribution of Y similarly as one that is easy to generate samples

from:

p(y) =
1

ZY
eK(y), (2.12)

giving joint distribution:

p(x, y) = p(x)p(y) =
1

Z
eU(x)+K(y) =

1

Z
eH(x,y), (2.13)

with some Hamiltonian H(x, y). The idea is to propose updates x′ = x + ∆x,

y′ = y + ∆y such that H(x, y) is conserved, since we are using it to represent

energy in a closed system. Following Hamiltonian dynamics it corresponds to

setting for some small ε:

∆x = ε∇yH(x, y) ∆y = ε∇xH(x, y). (2.14)

Thus with HMC sampling at each step we make several Hamiltonian dynamics
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2.5 Markov Chain Monte Carlo

updates, keeping the Hamiltonian roughly the same, before accepting the new

proposal with a Metropolis step. To ensure a symmetric proposal distribution ε

is chosen to be positive or negative randomly. The details are given in algorithm

2.

HMC proves much more effective than standard Metropolis-Hastings as fac-

toring in the gradient of the Hamiltonian allows the sampler to effectively find

its way around the state space. Considering the auxiliary random variable Y as a

momentum variable allowing you can see how it allows the chain to pass through

areas of low density swiftly and escape local areas of high density.

2.5.4 Advantages and Limitations

The key advantage to MCMC algorithms is that they are asymptotically exact.

That is to say in the limit of infinite time we will be getting samples from the

exact correct distribution. The problem of course is that we do not have infinite

time and so we must simply run the chain for a long finite time and hope that

the distribution is “close enough” to the target, something for which there are

few theoretical guarantees.

Additionally these methods while very simple to implement are computation-

ally very expensive and so it can take much longer to evaluate than some of the

more approximate methods we will talk about later. The trade off is that we

can be sure that the distribution will in fact tend to the correct distribution,

something that other methods can neither guarantee nor hope to come close to.

In terms of accuracy of the distribution, HMC is considered the gold standard

among modern computational Bayesian techniques and as we shall see later has

been successfully used to sample from the posterior in NN models.
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2.6 Variational Inference

2.6 Variational Inference

An alternative to MCMC is Variational Inference (VI) [Blei et al., 2017] (often

also known as Variational Bayes). Here we have an intractable distribution p(x)

which we would like to approximate with a simpler distribution q(x) with some

free parameters θ. We would like to then select θ such that q(x) is as close to

p(x) as possible. A common measure used to assess this is the Kullback-Leibler

(KL) divergence, defined as:

KL
(
q(x)||p(x)

)
= Eq

(
log q(x)− log p(x)

)
. (2.15)

This has the useful properties of always being non-negative and equal to zero if

and only if p and q are the same distribution. In practice we are often interested

in the posterior distribution of some latent variables Z given the data D, written

p(z|D), which we aim to approximate with q(z). The KL divergence can still be

hard to evaluate so we often rewrite the expression as follows:

KL
(
q(z)||p(z|D)

)
=

∫
Z

q(z) log
q(z)

p(z|D)
dz

=

∫
Z

q(z) log
q(z)

p(z,D)
dz +

∫
Z

q(z) log p(D)dz

=

∫
Z

q(z) log
q(z)

p(z,D)
dz + log p(D)

log p(D) = KL
(
q(z)||p(z|D)

)
−
∫
Z

q(z) log
q(z)

p(z,D)
dz

log p(D) = KL
(
q(z)||p(z|D)

)
+ L(q),

where L(q) is known as the Evidence Lower BOund (ELBO), since the evidence

p(D) is fixed with respect to the parameters of q, maximising L(q) is equivalent to
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2.7 Gaussian Processes

minimising KL
(
q(z)||p(z|D)

)
. In the case where this is computationally tractable

we then have the familiar task of selecting the parameters θ of q(z) such that

L(q) is maximised. We can then use any of the optimisation techniques already

discussed and this essentially transforms the Bayesian inference problem into one

of optimisation, an already extensively researched area and one for which there

are many tools available. VI is often significantly less computationally expensive

than MCMC but suffers from the fact it will be inherently non-exact as well as

the other host of problems that come with non-convex optimisation. It can also

require a lot of work on the part of the practitioner to derive and evaluate the

ELBO of the suitable approximate distributions used as the integrals involved

are very often analytically intractable.

Due to the relative speed of VI methods we shall see that these ideas are the

basis of most of the efficient and scalable methods for trying to fit Bayesian neural

networks.

2.7 Gaussian Processes

We have so far only considered parametric models of the data, Gaussian Processes

(GPs) [Rasmussen, 2003] on the other hand are a type of model know as Bayesian

non-parametrics. These are so-called since they can be thought of as having no

parameters or even an infinite number such that it doesn’t really make sense to

consider the meaning of them. We should also note that NNs are often thought

to not exactly be parametric models since the number of parameters is usually

so high. The reason we discuss GPs here is that they present an alternate way

to consider a distribution over some estimate given by a model, and in fact there

has been shown to be many interesting connections to deep learning that we shall

explore later.
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2.7 Gaussian Processes

Figure 2.4: Top left to bottom right: Three draws from a squared exponential
kernel with parameter a) 0.1 b) 1 c) 3 along with d) six draws from the predictive
distribution given a squared exponential prior with parameter 1.

2.7.1 As a Prior over Functions

We consider the general supervised learning paradigm of learning a function f :

X → Y . The idea is that any function can be described by a vector of infinite

length that at each entry contains the value of the function evaluated at a different

point. A GP assumes this vector to be sampled from an infinite dimensional

Gaussian distribution, that is to say any finite number collection of the variables

is distributed according to a multivariate Gaussian. The distribution is generally

considered to be zero mean, though this can be adjusted by using another function

to evaluate the mean, with the covariance between any two points x and x′

governed by a covariance function, or kernel, k(x, x′). A correctly defined kernel

therefore completely defines an appropriate multivariate Gaussian which we can

draw samples from easily, and with each sample representing a function we can

as such consider it a prior distribution over functions.
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2.7 Gaussian Processes

2.7.2 Covariance Functions

As mentioned above we are looking to model a function, given as a distribution

over the functions output values p(Y |X), as a N(0, K). Importantly K must be a

positive definite matrix and so the method of constructing it is quite constrained.

Still there are a number of different possibilities for the kernel, including the linear

and squared exponential kernels. It can also be shown that any sums, products,

and vertical rescalings of kernels are also themselves kernels. Fig. 2.4 shows a few

different choices of covariance kernels and how they give rise to different priors

over functions.

2.7.3 Making Predictions

When making predictions with GPs we simply use Bayes rule as shown in the

Bayesian inference section to take our prior and update our distribution. I will

omit the derivation for brevity but the key points are that this method is firstly

exact in that there are no local minima to worry about (though there may be if

we wish to also learn the hyperparameters of the model in an empirical Bayes

paradigm). Secondly it is principled in that it is very clear how uncertainty is

dealt with and where it comes from. Lastly though it is computationally expensive

as for a sample of size n it requires calculating the inverse of an n × n matrix

which is of complexity O(n3), making them far too expensive for modern large

datasets.
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Chapter 3

Bayesian Deep Learning - A

Review

“To know what you know and

what you do not know, that is true

knowledge.”

Confucius

Summary

We will now give a brief history of Bayesian deep learning (BDL) as well as review

the current state of the art, summarising and discussing important papers while

identifying promising future areas of interest. We will go through the literature

chronologically, examining how Bayesian inference was first considered in deep

neural networks, before looking at the modern approximations that have driven

the recent increase in popularity of these methods. Then we will cover important

papers in more general variational inference which while not specifically designed

for NNs can be applied to them.
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3.1 The Origins of Bayesian Neural Networks

While we look at multiple papers which each write things in their own way,

I will now establish the notation I shall use throughout this chapter and in the

future for clarity and so as to avoid confusion. We will always consider a data

set D made up of n observation tuples {(xi, yi)}ni=1, where (xi, yi) ∈ Rk × Rm

with xi a k dimensional input and yi an m dimensional output. We consider

NNs / MLPs as functions f : Rk → Rm parameterised by a set of weights w

and biases b, made up of individual weights wi and biases bi. On the data

set we shall consider the output of a NN as an estimator for the corresponding

output, writing ŷi = f(xi|w,b) with a Gaussian likelihood for the data, that is

Yi|Xi = xi ∼ N(ŷi, σ
2).

3.1 The Origins of Bayesian Neural Networks

Since the introduction of deep neural networks there has been interest in a

Bayesian fitting of the model, however for a long time even a deterministic fitting

of the model was difficult when it came to large modern architectures. Calculat-

ing a distribution over a weight or bias will certainly require more work than a

single point estimate since the distribution will itself be parameterised by usually

at least a location and scale parameter.

3.1.1 General Framework and a Laplace Approximation

The first significant attempt to incorporate NNs into a Bayesian framework was

done by MacKay [1992] which also introduced a Laplace approximation for some

distributions of interest. MacKay asks us to consider the values:

ED(D) =
n∑
i=1

1

2
(ŷi − yi)2 EW (w) =

∑
i

1

2
w2
i ,
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3.1 The Origins of Bayesian Neural Networks

where ED is an error term for the accuracy of the model and EW is a regularisa-

tion term to penalise large weights. We might then be interested in minimising

M = αEW (w) + βED(D) where α and β are hyperparameters to be chosen.

MacKay shows then that assuming Gaussian error in the data the likelihood of

an observation in the model can be written:

p(yi|xi,w,b, β) =
exp[−βED((xi, yi))]

Zm(β)
, (3.1)

with Zm(β) =
∫

exp[−βED((xi, yi))]dy and a prior:

p(w|α) =
exp[−αEW (w)]

ZW (α)
, (3.2)

with ZW (α) =
∫

exp[−αEW (w)]dkw (With k weights). This yields a posterior:

p(w|D, α, β) =
exp[−αEW (w)− βED(D)]

ZM(α, β)
, (3.3)

with ZM(α, β) =
∫

exp[−αEW (w) − βED(D)]dkw. In this interpretation min-

imising M can be though of as finding the most probable singular values for the

weights, wML. A key point MacKay makes next is that if you assume the distri-

bution to have a single mode at wML and that it is quadratic around the mode

then ZM can be approximated as:

ZM ' e−M(wML)(2π)
k
2 det−

1
2A, (3.4)

where A = ∇∇M is the Hessian of M evaluated at wML. Thus MacKay intro-

duces the method of evaluating point estimates of the weights using a typical

method such as backpropagation before then building a Gaussian distribution

around them using an evaluation of the Hessian for the variances. While we

don’t have any reason to believe these assumptions hold, or this is a good ap-
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3.1 The Origins of Bayesian Neural Networks

proximation to the posterior distribution, empirically it seems to produce good

results when all the weights are considered together.

3.1.2 Minimising Descriptive Length

While this traditional Bayesian framework was being formulated, Hinton & van

Camp [1993] came at the problem from a slightly different, information theoretic,

point of view. Despite this they essentially became the first to use a form of

variational inference, where the posteriors are approximated with a Gaussian or

mixture of Gaussians.

The Minimum Descriptive Length Principle (MDL) [Rissanen, 1986] says that

the best model for some data is the one that uses the least information to de-

scribe both the model and the discrepancy between the model output and the

seen data. The idea is to minimise a loss function made up of a complexity loss

(that says how much information is required to transmit the model) and an error

loss (that relates to describing the deviations of the data from the model). Thus

Hinton & van Camp encoded the weights of a NN as a Gaussian distribution and

sought to optimise the accuracy of the model while keeping the KL divergence

between this posterior and a Gaussian prior as small as possible. They did this

by updating the means and variances of the weights in a similar way to the tradi-

tional backpropagation algorithm, taking the error at the end and calculating the

partial derivatives with respect to each weight mean and variance layer by layer.

This then models the posterior over all of the weights as a multivariate Gaussian

distribution with a diagonal covariance matrix. This was improved on later by

Barber & Bishop [1998] who showed you could get a similar deterministic algo-

rithm that would permit a more general covariance matrix, allowing interactions

between weights.

Following this method then results in distributions over weights, as we would
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3.1 The Origins of Bayesian Neural Networks

expect from Bayesian inference. While this is done by “minimising descriptive

length” and not multiplying a prior by a likelihood there are clear parallels and

are often considered very similar if not the same idea just by different names.

Indeed the complexity loss in MDL is comparable to the terms for the prior in

Bayesian inference as well as to any regularisation terms in a traditional setting

while the error loss relates to the likelihood of the data as well as standard cost

functions.

3.1.3 Practical Hybrid Monte Carlo

In his PhD thesis, Neal [1994] addressed two important aspects of BDL. First was

the issue of the meanings of priors over the weights in NNs. Priors are usually

chosen because of previous knowledge about the distribution of the parameter but

in NNs we really don’t have any intuition about what the shape of the distribution

should look like and so in some sense it doesn’t make much sense for us to

arbitrarily select a prior. To solve this, Neal considered how individual priors

over weights interact and give rise to a prior over functions when together in the

NN. In order to then assess them he looked at the limit of these functions as

the number of hidden units goes to infinity. Neal showed that when considering

Gaussian priors over the weights, if using a smooth activation function such as

the hyperbolic tangent function (tanh), the priors would converge on a Gaussian

process. Additionally if using a step-function they would instead converge on a

Brownian process. This gives us at least a principled reason to select priors over

individual weighs even if we have no reason to think the weight actually has such

a distribution.

Secondly Neal introduces the idea of using Hybrid Monte Carlo (algorithm 2)

to sample from the posterior distribution. Before this, only approximations had

been tried but Neal thought that it was important to have a method which did
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3.2 Modern Approximations

not rely in a specific parameterisation of the posterior. As such Neal used HMC

to accurately sample from the posterior of the weights as well as using Gibbs

sampling in order to optimise the hyperparameters.

While this method undoubtedly gives more accurate solutions, there is a cost.

Neal noted that on the hardware of the time finding a solution to the “robot arm

problem” took about 20 hours of computation time, while MacKay [1992] found

his method took only 6 minutes, leading to a hugely significant difference.

3.2 Modern Approximations

After the initial flourish of excitement around BDL there was a bit of a period

where very little progress was made. These initial ideas seemed to have little

scope as the approximations would break down with scale or simply take too

long do be of any practical value. This also coincided with a time where NNs in

general fell a little out of favour with the research community as little progress

was being made and models like the Support Vector Machine [Scholkopf & Smola,

2001] seemed to be the way forward.

That being said there has recently been another burst of interest in the area,

with a number of effective and scalable algorithms proposed, as well as ways to

interpret common practices as a form of Bayesian inference, which we shall now

survey.

3.2.1 Practical Stochastic Variational Inference

Building on the work of Hinton & van Camp [1993], Graves [2011] introduced a

simple idea to make training more computationally practical. Essentially Graves

decided to ignore any analytic solution and focus on variational distributions that

have expectations that are well numerically approximated. A good example that
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can be applied to any differentaible log-loss model is a diagonal Gaussian. For

a NN considering the negative log-likelihood as the network loss, LN(w,D) =

− log p(D|w), this is clearly differentiable as done in backpropagation. Thus also

considering a prior p(w|α) parameterised by α, and a variational distribution

q(w|β) paramterised by β we can write the ELBO:

L(q) = Eq(LN(w,D))︸ ︷︷ ︸
LE(β,D), error loss

+KL(q(w|β)||p(w|α))︸ ︷︷ ︸
LC(α,β), complexity loss

, (3.5)

arriving at a clear formulation of an MDL loss function:

L(α, β,D) = L(q) = LE(β,D) + LC(α, β),

showing that optimising L(α, β,D) is the same as variational inference in the

model. All that’s left then is to derive the partial derivatives of each loss expres-

sion with respect to the parameters of the variational distribution, which in a

diagonal Gaussian consists of two vectors containing a mean µi and variance σ2
i

for every weight and with a Gaussian prior with α = {µ, σ2}. In this case the

complexity loss can be evaluated analytically:

LC(α, β) =
W∑
i=1

log
σ

σi
+

1

2σ2

[
(µi − µ)2 + σ2

i − σ2
]
,

∂LC(α, β)

∂µi
=
µi − µ
σ2

,

∂LC(α, β)

∂σi
=

1

2

[ 1

σ2
− 1

σ2
i

]
.

The error loss on the other hand requires a Monte Carlo approximation, as an

expectation we take the mean of S samples drawn from q and can then take
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derivatives:

LE(β,D) = Eq(LN(w,D)) ' 1

S

S∑
k=1

LN(wk,D),

∂LE(β,D)

∂µi
' 1

S

S∑
k=1

∂LN(wk,D)

∂wi
,

∂LE(β,D)

∂σi
' 1

2S

S∑
k=1

[∂LN(wk,D)

∂wi

]
.

where the partial derivatives of the network loss are obtained in the standard,

backpropagation manner. Graves also derives the derivatives for a number of

other variational distributions as well as for optimising α so that we can learn

the parameters of the prior under an empirical Bayesian framework.

3.2.2 Bayes by Backprop

The estimators from Graves [2011] suffer from being slightly biased, building on

the work though Blundell et al. [2015] introduced a “backpropagation-compatible

algorithm for learning a probability distribution on the weights of a neural net-

work” which calculates unbiased gradients and updates the weights in a back-

propagation style algorithm. The algorithm, called Bayes by Backprop, focuses

again on a diagonal Gaussain posterior but relaxes limitations on the prior that

the complexity cost be analytically calculated.

Again, a diagonal Gaussian is parameterised by a vector of means µ and

variances σ2 though here they parameterise σ = log(1 + exp(ρ)) ensuring σ is

always positive and so the parameters of the variational distribution q are θ =

{µ, ρ}. They also note that the weights can be written w = µ+ log(1 + exp(ρ))ε

where ε ∼ N(0, 1). While calculating the derivatives of the ELBO they consider
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the intermediate function:

f(w, θ) = log q(w|θ)− log p(w)p(D|w), (3.6)

which is a standard NN cost function with regularisation, the derivatives of which

can again be calculated with backpropagation. Sampling ε the gradients of the

ELBO can then be calculated and updated as follows:

∂L(q)

∂µ
=

∂

∂w
f(w, θ) +

∂

∂µ
f(w, θ),

∂L(q)

∂ρ
=

∂

∂w
f(w, θ)

ε

1 + exp(−ρ)
+

∂

∂ρ
f(w, θ).

Thus to calculate the gradients with respect to the mean and variance you simply

need to calculate the standard gradients with respect to the weights before scaling

and shifting them appropriately.

With Blundell et al. coming out of DeepMind it’s only natural that they

highlight the applications of their method in reinforcement learning, particularly

contextual bandits where the associated uncertainty when using BDL to evaluate

agents Q functions can help in the common exploration/exploitation problems.

3.2.3 Probabilistic Backprop

While methods so far have mostly come from an MDL perspective, Hernández-

Lobato & Adams [2015] introduced a new approach and algorithm they call prob-

abilistic backpropagation (PBP). Similar to the traditional backpropagation algo-

rithm, PBP has two phases. In the first, the data is input and then propagated

through the network. This gives rise to intractable distributions over the weights

which PBP approximates with a Gaussian by matching moments (choosing the

mean and variance to be equal to the ones of the intractable distribution). This
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is a resultant property of the KL divergence when considering Gaussians. After

the first phase the output is given as the negative log-likelihood of the data and

so in the second phase the gradients of this are taken with respect to the means

and variances of the Gaussians and propagated backward through the network

using reverse-mode automatic differentiation so that they can be used to update

the parameters.

3.2.4 Dropout as a Bayesian Approximation

Srivastava et al. [2014] introduced dropout as a technique for regularising a neural

network. The idea was fairly simple, with each pass through the network during

training time each neuron would be randomly “dropped” with some probability

1 − p (i.e. the activation would be set to zero). Mathematically, and keeping

notation from section 2.2, every layer this amounts to sampling a vector dl from

a binomial distribution with the same length as the number of neurons in the

layer and with probability p and multiplying the activations elementwise by this

vector (note p can be a global parameter but we will usually consider a separate

pl per layer):

al = σ
(
wlal−1 + bl

)
� dl. (3.7)

Only weights connecting non-zero neurons will be updated after the pass and

so for every training example this is essentially sampling from an exponential

number of smaller neural networks to update. The main point here is that specific

neurons don’t become co-dependant on each other and the network is still able

to perform accurately without all of the neurons being present. At test time,

instead of sampling and setting activations to zero all outputs are kept but are

scaled by p so that the overall magnitude of the outputs stays the same during
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Figure 3.1: An example of the effect of dropout; each node with a cross is
“dropped” and so no output from it is passed to the next layer.

both training and test time. Srivastava et al. showed this technique significantly

reduced over-fitting and produced more accurate results at test time.

Given the ease of implementation as well as clear benefits dropout saw wide use

in the community, but was just seen as a particularly useful regularisation tech-

nique and nothing more. That changed when Gal & Ghahramani [2016] showed

that actually training a network with dropout was mathematically equivalent to

approximate Bayesian inference in a deep Gaussian process.

Gal & Ghahramani showed that in both the case of training a NN with dropout

and L2 regularisation, and performing variational inference you arrive at the same

objective function to be optimised up to a constant:

L ∝ 1

N

[ N∑
i=1

(ŷi − yi)2
]

+ τ
l∑

j=1

pl−1||wj||2, (3.8)

where τ is made equal in each case through careful selection of hyper-parameters.

In order to then use dropout to assess uncertainty, Gal & Ghahramani suggests

Monte Carlo (MC) dropout whereby instead of scaling the activations at test time

you simply make a large number of passes through the network, sampling every
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time, and then taking the empirical distribution of the output to get information

about how certain the output is. Thus they provided a very fast and principled

way to perform BDL with which many people were already familiar and did not

require much further modification.

3.3 Important Work in Bayesian Computation

We will now take a look at some important ideas in computational Bayesian meth-

ods that while not specifically designed for use in NNs have strong connections

that are either directly related or can be applied with small modifications.

3.3.1 Stochastic Gradient Langevin Dynamics

Welling & Teh [2011] introduce a novel way of sampling from a posterior distribu-

tion by combining standard stochastic optimisation with Langevin dynamics to

efficiently generate samples in a style quite similar to MCMC. First Welling & Teh

note that when considering a parameter θ with prior p(θ) along with some data

D = {xi}Ni=1 and consequent likelihood p(D|θ) a standard optimisation procedure

at step t updates θ according to:

∆θt =
εt
2

(
∇ log p(θt) +

N

n

N∑
n

log p(xti|θt)
)
, (3.9)

with εt a Robbins & Monro [1951] sequence. The idea in the paper is quite simple,

take the standard update rule and add a noise term:

∆θt =
εt
2

(
∇ log p(θt) +

N

n

N∑
n

log p(xti|θt)
)

+ ξt, (3.10)

where ξt ∼ N(0, εt) and the variance is chosen in accordance with the stochastic

estimator of the likelihood to give the appropriate resulting variance for the pos-
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terior distribution. The noise term prevents θ from converging on any ML/MAP

estimate of the parameter and as Welling & Teh show it actually allows con-

vergence on the correct posterior distribution as in a similar way to Langevin

Monte Carlo (An MCMC variant that proposes steps based on a discretisation of

the Langevin stochastic differential equation) but with a decaying step size that

removes the need for any Metropolis-Hastings acceptance step. This is the part

that saves a lot of computation time since in MCMC this step requires an eval-

uation over all the data. Thus it we can start optimising θ and after a suitable

amount of time to allow the Langevin dynamics to take effect we can take the

values achieved as samples form the posterior (like in MCMC) for use in Monte

Carlo estimates.

3.3.2 Black Box Variational Inference

Black box variaional inference (BBVI) [Ranganath et al., 2014] was introduced as

a simple and effective way to perform VI in a wide variety of models. Ranganath

et al. noted that in many cases it took practitioners a long time to derive an

appropriate form of the lower bound for every different model they used and a

general case algorithm was missing. BBVI therefore aims to fill this gap, the main

idea is considering the ELBO as an expectation with respect to the variational

distribution:

L(q) , Eqθ(z)[log p(x, z)− log q(z|θ)]. (3.11)

They then show that you can write the gradient of this ELBO as an expectation

with respect to the variational parameters as well:

∇θL(q) = Eqθ(z)[(∇θ log q(z|θ))(log p(x, z)− log q(z|θ))]. (3.12)
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Thus both of these expressions can be approximated by the sample mean of S

Monte Carlo samples from the variational distribution, in particular:

∇θL(q) ' 1

S

S∑
s=1

[(∇θ log q(zs|θ))(log p(x, zs)− log q(zs|θ))], (3.13)

where zs ∼ q(z|θ). In practice we may make use of samples of size 1, making the

algorithm computationally simpler although of course resulting in a high variance

estimator of the ELBO.

This means we can then perform standard stochastic optimisation on the

ELBO with very few restrictions. Crucially all that is required is that you can

evaluate the log of the joint, log p(x, z), which one is usually able to do. Of

course we are also assuming we can sample from, and evaluate the score function

of, the variational distribution but since those are simple distributions chosen

for convenience we should be able to do that. This means then that we can

apply BBVI in NN models as well, although it does tend to be the case that

the stochastic estimators of the gradient have quite large variance. This requires

some tricks to decrease the variance, a couple of which Ranganath et al. details

in the paper.

3.3.3 The Reperameterisation Trick

In another attempt to scale up VI, Kingma & Welling [2013] introduced a new

way to parameterise the ELBO so as to yield an easy stochastic estimator of the

gradient. As part of this, and probably the most significant contribution of the

paper, is the introduction of the reperameterisation trick that provides a way of

introducing differentiability with respect to the parameters of distributions. Sup-

pose there is a latent variable z of interest with variational posterior distribution

such that z ∼ qφ(z|x). The key observation by Kingma & Welling is that it is
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usually possible to write z = gφ(x, ε) where g is some deterministic function and

ε a noise variable. For example if z ∼ N(µ, σ2) then we may write z = µ + σε

where ε ∼ N(0, 1). This retains the important property that:

Ez
[
f(z)

]
= Eε

[
f(gφ(x, ε))

]
, (3.14)

so that we can still sample the noise variable to get Monte Carlo approximations.

The important thing is that any direct realisation of z is not differentiable with

respect to the distributional parameters. However we can now instead sample

from the noise distribution and pass it through gφ to get an equivalent sample

but one which we can differentiate.

There are a few standard ways to pick a suitable g function. First, like with

the Gaussian example, any “location-scale” family can be picked in the same

manner of location + (ε × scale). Second is in the case of a tractable inverse

CDF, where ε ∼ U(0, 1) and g is the inverse CDF. Lastly some random variables

(for example the log-normal or Gamma) can be written as the composition of

more basic auxiliary variables.

In the same paper, Kingma & Welling present some more techniques for op-

timising the ELBO in unsupervised learning with an algorithm for learning an

encoding and decoding distribution for the latent variables including when using

a neural network to arrive at the variational auto-encoder, a now popular and

powerful generative model.

3.3.4 Normalising Flows

In an attempt to create a very flexible class of variational distribution Rezende &

Mohamed [2015] introduced the use of normalising flows to take a standard base

distribution such as a Gaussian and then transform it multiple times by passing
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it through a series of invertible mappings until you result in a potentially very

complex and flexible distribution.

Given an invertible function f and latent variable z with distribution q(z) the

resulting random variable z′ = f(z) had distribution:

q(z′) = q(z)
∣∣∣ det

∂f−1

∂z′

∣∣∣ = q(z)
∣∣∣ det

∂f

∂z

∣∣∣−1

. (3.15)

Repeating this a finite N number of times with different invertible functions fi so

as to obtain the new random variable zN = fN ◦ ...◦f1(z) results in a distribution

of:

log qN(zN) = log q(z)−
N∑
i=1

log
∣∣∣ det

∂fi
∂zi−1

∣∣∣. (3.16)

Thus we can sample for q(z), pass it through the function and arrive at a new

sample zN from qN which we can then use in a numerical approximation of the

ELBO. Then, given suitable functions, we can take the derivative of the ELBO

with respect to the parameters of these functions and update them accordingly.

Rezende & Mohamed also consider the case when the flow is infinitely long. In

this case, instead of being described as a sequence of transformations, we consider

a partial differential equation that describes how the density changes over time.

As with Welling & Teh [2011] they consider the Langevin stochastic differential

equation to show that it can be used to sample from the exact posterior in the

limit of infinite time.
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Chapter 4

Experiments and Contributions

“If we knew what it was we were

doing, it wouldn’t be called

research, would it?”

Albert Einstein (Apparently)

Summary

Now that we have discussed Bayesian deep learning extensively and considered

a variety of different approximate methods for evaluating the posterior distribu-

tions, we will now detail the practical aspects of our work on this project. First

we will implement a number of these algorithms to examine how they work in

practice as well as consider the trade-offs in using different methods. Then we will

get to the main part of this project, improving the flexibility of the dropout ap-

proximation by incorporating the dropout rate into the variational distribution,

and seeing how this works in practice.
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4.1 Comparison of Methods

4.1 Comparison of Methods

Having looked in depth at Bayesian neural networks and examined a few different

methods for how to approximate the posterior, it might be useful to see how

they work in practice. We will look specifically at four implementations: Hybrid

Monte Carlo, Bayes by Backprop, MC Dropout, and Graves’ variational inference

method. These are interesting as they cover the main approaches from Markov

chain Monte Carlo to fitting a mean-field approximation in backpropagation style

as well as an interpretation of dropout as a Bayesian fit and a minimum descriptive

length framework.

4.1.1 Predictive Distribution Analysis

In order to get an idea for how accurate these approximate methods are we

implement a few of them on a simple one-dimensional regression problem. In the

set up we consider the data set {xi, yi}100
i=1 where the xi are sampled from a N(0, 4)

distribution truncated at -4 and 4 with yi = 100 sin(xi) + 10ε, ε ∼ N(0, 1). This

set up is beneficial since we can visualise the posterior predictive distributions

well, in higher dimensions this becomes impossible.

For all of the methods we consider a standard set up for the neural network.

We use a single hidden layer with 128 neurons connected by a hyperbolic tangent

activation function. All prior distributions are chosen as standard Gaussian.

Each method though had a number of parameters unique to that method and we

tried to find the optimal parameters in each case though it can’t be guaranteed

an optimum was reached. Once trained, in order to visualise the uncertainty,

we took 100 samples from the posterior and evaluated the neural network on a

test set of 100 equally spaced points on the interval [−4, 4]. For HMC we use a

slightly different method of producing 100,000 samples from the chain, using half
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4.1 Comparison of Methods

Figure 4.1: Results of a toy regression problem using a few different Bayesian
deep learning methods. The red line represents the true underlying function with
the blue dots the training set. The dark blue line represents the mean prediction
while the shaded blue area represents plus minus two standard deviations from
the mean. [See Appendix A]
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of those as burn-in and using the other half for prediction (Acceptance probability

was tuned to 65%, as suggested by Beskos et al. [2013]). Given these predictive

realisations we plot the empirical mean prediction as well as +/- 2 standard

deviations, as shown in Fig. 4.1.

Before looking at the Bayesian approach we first note the traditional neural

network first the data very well though there does look to be slight over-fitting

happening as the prediction is not as smooth everywhere as the true function.

Of course in simple cases like this we would expect the traditional method to do

well and it is not a case where we would really be able to make good use of a

Bayesian approach’s benefits.

Unlike the other methods we do know that HMC is asymptotically exact.

We shall thus use it as the standard by which we measure the other methods

in terms of accuracy, as we assume it to be close enough to the “truth” given

the number of samples taken and burn-in period used to make fairly accurate

comparisons. Given this, and looking at Fig. 4.1 we see that all the methods

tend to have a higher predictive variance than HMC but with a fairly accurate

mean. However Bayes by Backprop produces the closest predictive distribution,

though it appears still to have slightly too much variance in the turning points

of the function. Second comes MC Dropout which seems to have quite a high

variance at all points but otherwise a fairly accurate mean prediction. Graves’

method performs the worst, which is not particularly surprising as it’s an old

method with a lot of approximations.

With that being said it’s important to remember this is only a very simple

example and we can’t really be sure how the posterior distributions will behave

in a higher dimensional or more complicated task. For example dropout in its

traditional use (i.e. not as a Bayesian approximation) tends to work better for

bigger problems and in networks with more layers and neurons so we might see
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an improvement in a different setting.

4.1.2 A Note on Speed

For any method the key things that matter are how accurate they are and how

fast we can implement them. Having looked at the accuracy of the methods we

may now want to compare the speeds. From our experience implementing them

it was clear the regular neural network and dropout where comparable and by

far the fastest. This was followed by Bayes by Backprop and Graves with HMC

taking by far the longest to run. We haven’t included any specific timings as they

wouldn’t be very useful, since when it comes to these large scale algorithms a lot

of work can be done to numerically optimise how fast they can run. This includes

tricks with the mathematics as well as multi-threading and GPU implementation

and we simply aren’t sophisticated enough to get all of the algorithms running

at optimal speed. However as we have done we can comment generally on at

least comparatively how fast they run when implemented in a fairly basic fashion

which should hopefully be useful.

4.2 Dropout Rate Optimisation

We shall now move on to the main result of this project, answering the question

as to how we can and should optimise the rate of dropping neurons in dropout.

4.2.1 The Problems with a Fixed Rate

Since the original paper where dropout was formulated it has always been rec-

ommended to use 0.5 as the dropout rate (p) at non-input layers. This decision

has always been based on the empirical evidence that 0.5 appears to work well,

as Srivastava et al. say, “[p] can simply be set at 0.5, which seems to be close to
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optimal for a wide range of networks and tasks”. They note also though that it

can be chosen based on a validation set, as Gal & Ghahramani also suggest, via

grid search.

In the first case of just using one half this appears problematic in that it seems

we are unnecessarily reducing the flexibility of our approximation by restricting

ourselves to only one value of p. The second presents a different problem of seem-

ing rather unprincipled when in the Bayesian context but also computationally

expensive, having to evaluate the model on a wide range of values of p.

We will now present two different ways to optimise the dropout rate based on

the data and see how they can be used in the wider context of both standard and

Bayesian neural networks.

4.2.2 Coordinate Ascent

We first ask the question why is p not optimised, like all the other parameters,

by taking the gradient of the cost function and updating accordingly? Simply, it

doesn’t show up in the expression for the model when we consider the original

formulation of dropout (i.e. not Bayesian). Without loss of generality, if we

consider the forward pass at training time for a single hidden layer neural network

with dropout we get:

f1(x) = (σ((x� d1)w1 + b1)� d2)w2 + b2, (4.1)

where w1, w2 weight matrices, b1, b2 bias vectors, σ an elementwise activation func-

tion, � symbolising elementwise product, and d1, d2 vectors of Bernoulli random

variables sampled with probability pi (the dropout rate in layer i). Importantly

there is no occurrence of p in this expression and so no gradient can be taken,

p is instead used to sample a random variable which takes values not dependant
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Figure 4.2: A simplified look at how coordinate ascent works, we take a step to
update w followed by a step to update p. Crucially only one of the parameters
is changed at each update.

on p. Having said that, when it comes to test time a different function is used:

f2(x) = (σ((xp1)w1 + b1)p2)w2 + b2. (4.2)

Suddenly p becomes involved and so any cost function C involving f2 will be

differentiable in p. It might be tempting then to optimise solely based on f2, but

this of course is just a regular neural network with scaled weights and so loses the

dropout benefits. Additionally any value of the weight has infinite combinations

of w and p that come to the same value, giving no preference to any particular

combination.

Given this, we propose a method for optimising all the parameters via coor-

dinate ascent (Fig. 4.2). This amounts to having two steps to the optimisation

procedure, one gradient step for the weights and biases based on f1, and one

gradient step for p based on f2, as demonstrated in algorithm 3.
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Algorithm 3: Coordinate Ascent Dropout

Result: Optimised parameters w,p
Require : λ (Step size);
Require : w0, p0 (Starting points);
t← 0 (Initialise timestep);
while wt, pt not converged do

t← t+ 1;
wt ← wt−1 − λ∇wC(f1(x;wt−1, pt−1), y);
pt ← pt−1 − λ∇pC(f2(x;wt, pt−1), y);

end
return wt, pt (Resulting parameters)

4.2.3 Practical Behaviour

Applying this algorithm “works” in that our parameters converge and our training

error gradually decreases (see Fig. 4.3). This is by no means a guarantee as we are

optimising two different objective functions and so it would be perfectly possible

to not reach a joint global optimum. The behaviour of the weights behaves

exactly how we might expect given the training process is the same as before

and is consequently not of much interest to us. The behaviour of p however is

interesting and of most importance to our question, and indeed depends on the

problem setting.

In the case of a regression problem we see that the rate goes to one (or very,

very close) in every case. This is a problem really because when p equals one then

we’re just left with a regular neural network with no dropout and so completely

defeats the purpose in using it. The reason for this is unclear.

On the other hand when we consider a classification problem we find the

opposite, that p goes very close to zero (it never actually goes to zero since

that would give an output of zero which is clearly not optimal in any context).

This again is a problem as with a low rate of retaining neurons it introduces a

lot of randomness into the weights and so the variance of the outputs increases
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Figure 4.3: Results of a toy regression problem. Left: The change in p during
training. Right: Euclidean loss change during training

dramatically. The reason this might happen in classification problems is probably

to do with output layer and the use of the softmax function to scale all the outputs

so they add to one. Thus if all of the inputs to a softmax function are scaled

by the same amount (i.e. by p) then it won’t have an impact on the output

of the function. Thus the network is perfectly fine with p becoming very small

which there is at least some justification for given the appearance of p in the L2

regularisation term.

In summary then we see that the algorithm experiences practical issues with

the dropout rate going to either zero or one depending on the situation. Ad-

ditionally there are reasons to be worried from a theoretic point of view. For

example, we are essentially using two different objective functions to train the

network so we might be concerned we will not reach a joint optimum. The objec-

tive for optimising p is also not well theoretically justified, in the original paper

introduced only so that the expected output of the neurons remained the same

during training and test time.
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4.2.4 Incorporating the Bayesian Framework

Given the not particularly nice properties of the coordinate ascent algorithm

we look for an alternative and more theoretically justified way to optimise the

dropout rate. To do so we return the Bayesian interpretation of dropout. Gal

& Ghahramani [2016] consider a variational distribution with a fixed value of p,

but we define ours, with p a flexible parameter, to be of the form:

qW (w;m, p) = p
w
m (1− p)

m−w
m , (4.3)

for w ∈ {0,m}, 0 otherwise. That is w takes the value m with probability p and

0 with probability (1− p). This leads us to an objective function to maximise:

L(q) = Eq[log p(X,W )− log q(W ;m, p)]

= Eq[log p(X|W ) + log p(W )− log q(W ;m, p)]

= Eq[log p(X|W )] + Eq[log p(W )]− Eq[log q(W ;m, p)].

(4.4)

Fortunately the three expectation terms of the ELBO are possible to evaluate

either by MC approximation or analytically. For MC approximations we will

consider only samples of size one where ŵ will signify that realisation. The first,

the expected log likelihood evaluates to:

Eq[log p(X|W )] =
1

2

n∑
i=1

(f(xi; ŵ)− yi)2. (4.5)

The second, the expectation of the log prior (given a Gaussian prior) evaluates

to:

Eq[log p(W )] ∝ p||m||2. (4.6)
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We say proportional too since we can tune the variance of the prior as a pre-

cision parameter. Lastly the entropy of the variational distribution evaluates

analytically:

Eq[log q(W ;m, p)] = k(p log p+ (1− p) log(1− p)), (4.7)

where k is the number of weights. Thus since qW (w;m, p) is easily sampled

from we can get a good approximation to the ELBO at any point. Rather less

fortunately though we run into problems when trying to evaluate the gradient of

the ELBO. We notice that samples from q are either m or zero and so p never

shows up in the right hand side of expression 4.5, meaning the gradient with

respect to p is just zero and we can’t optimise them with respect to p, which is

the whole point. We also run into problems trying to take the gradient of the

ELBO directly using a trick such as black box VI which takes the gradient of

q with respect to both m and p. In this the problem is with m as the q is not

continuous in m, it’s not differentiable.

Note as above we can optimise with respect to m but not with respect to

p. In order to overcome these issues, and get a gradient in p, we consider a

slight reperameterisation of the weights, writing W = M ∗ B where we have

B ∼ Bernoulli(p) and M is a constant or considered a random variable with all

its density placed on the value m. Given this we use Jensen’s inequality to derive

an expression for the ELBO, starting with an expression given the distribution

over W before getting to one we can more easily handle in B. We use a slight

abuse of notation with the integrals but the meaning should be clear:
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log p(X) = log

∫
W

p(X,W )dW

= log

∫
B

∫
M

p(X,B,M)dMdB

= log

∫
B

∫
M

p(X,B,M)
q(B)

q(B)
dMdB

= log

∫
B

p(X,B|M = m)
q(B)

q(B)
dB

= log(Eq
[p(X,B|M = m)

q(B)

]
)

≥ Eq
[

log
p(X,B|M = m)

q(B)

]
= Eq

[
log p(X,B|M = m)− log q(B)

]
= LB(q),

with LB(q) the variational lower bound with respect to the variational distribu-

tion over B. In order to get the gradient of this with respect to p we employ

the black box VI trick to get the gradient as an expectation with respect to the

variational distribution:

∇pLB(q) = Eq
[
(∇p log q(B))(log p(X,B|M = m)− log q(B))

]
, (4.8)

which is justified by the dominated convergence theorem [Çınlar, 2011] where all

of the expressions in the expectation are calculable given a realisation b of B, in

particular log q(b) = log p if b = 1 and log(1 − p) if b = 0 which are also clearly

differentiable in p. We can thus take an MC approximation of this gradient and

update p accordingly as in algorithm 4.
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Algorithm 4: Bayesian Dropout Optimisation

Result: Optimised parameters m, p
Require : λ (Step size);
Require : m0, p0 (Starting points);
t← 0 (Initialise timestep);
while mt, pt not converged do

t← t+ 1;

Sample b̂ ∼ Bernoulli(pt−1);

mt ← mt−1 − λ∇m(1
2

∑n
i=1(f(xi;mt−1b̂)− yi)2 + αpt−1||mt−1||2);

pt ← pt−1 − λ(∇p log q(b̂))(log p(X, b̂|M = mt−1)− log q(b̂));

end
return mt, pt (Resulting parameters)

4.2.5 A Practical Example

Now that we have derived a theoretically justified algorithm to optimise the

dropout rate we would like to see how it behaves in practice. Implementing this

algorithm on a toy regression problem as in section 4.1 we see some interesting

properties for how p converges. The good thing is that it at least does always

seem to converge, just not always to the same thing depending on it’s starting

point. This may not be too surprising - it is well known that local gradient

based optimisation methods will find a local and not necessarily global optimum.

Indeed, as shown in Fig. 4.4, there appears to be a large catchment area where

the dropout rate will converge on a specific value, in this case 0.37. Outside of

this though the rate will go to either 1 or 0 depending on which is closer.

The rate shows some interesting behaviour in that whenever it converges to

0.37 it doesn’t go there directly, instead it initially moves in the opposite direction

before coming back to the centre.

We note that whenever the rate hits either 0 or 1 it’s immediately trapped

there by the practical implications of what the dropout rate actually does in the

network. There may be reason to believe then that if p wasn’t constrained to [0, 1]
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Figure 4.4: Results of a toy regression problem. Left: The change in p during
training, each line corresponds to different starting values of p. Right: Example
change in the ELBO during training

it might converge back to 0.37 since it looks initially like it’s following the general

pattern of moving in the opposite direction before coming back to the centre, the

problem is it then hits the barrier of either 0 or 1, not letting it change further.

Regardless of whether or not the algebra might make the rate converge back

to 0.37 though we now see it’s clear that the rate will converge practically to one

of 0, 0.37, or 1.

4.2.6 Validation by Grid Search

To validate whether these convergent values of the dropout rate are reasonable

we also use grid search to evaluate the ELBO at different values of p. We evaluate

every 0.1, as well as also looking at 0.37 since that is the value we have found

is converged on. Fig. 4.5 shows the resulting plots of the ELBO during training

while keeping p fixed at a starting point as well as a plot of the average ELBO

achieved for different values of p. Our evaluations of the ELBO are necessarily

noisy due to the MC approximations so it is not always clear the exact value of the

ELBO being converged on (except fortunately in the case of zero and one where

there is no randomness). Thus for p ∈ (0, 1) we approximate the value of the
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Figure 4.5: Plots of the ELBO during training while the dropout rate is fixed
and not optimised. The red dotted line shows the value of the ELBO achieved at
convergence by averaging the last 20% of the values. Last plot summarises the
average ELBO reached against fixed dropout rate.
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Figure 4.6: Plots of how the dropout rate changes originally, when p is con-
strained to [0.05, 0.95], and when the learning rate is halved. Left: p starting at
0.9. Right: p starting at 0.1.

ELBO by averaging the last 20% of the evaluations once it appears convergence

has been reached.

We see when p is set to 0.37 the ELBO reaches an average of 43.409, this is

clearly much higher than when p is 1 with an ELBO of -0.484, and when p is 0

with an ELBO of -10.243. This gives us very clear evidence that values of 0 and 1

are not optimal, the values of the ELBO they achieve are clearly not a maximum.

Additionally it verifies that a rate of 0.37 credibly results in the highest value for

the ELBO compared to other values in (0,1). We note though that technically

in our experiments the rate of 0.4 achieved an average of 43.552, very slightly

higher than the 43.409 of 0.37 but it seems perfectly possible this is just due to

the inherent noise in the approximation.

4.2.7 Preventing Convergence to Zero or One

It is not very satisfying that the rate sometimes converges to 0 or 1 when we now

know them to not be optimal. We suggest that the reason for this is that once

the rate hits 0 or 1 the value for log q(B) will always be zero given a realisation of

B and so our estimator for the gradient will also be zero. Thus we might expect
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that if p never gets to 0 or 1 it will eventually converge on the optimal rate. To

test this we try two different things; first we artificially constrain p to be in the

closed interval [0.05, 0.95] so that it can’t go to 0 or 1, and second we try a slowed

learning rate with the hope that the direction will change before we get to 0 or 1.

Fig. 4.6 shows what happens when we try this starting at a rate of 0.9 or 0.1. As

we’ve already seen from Fig. 4.4 if we start at 0.9 we normally hit 1 and starting

at 0.1 we normally hit 0, but when we use these two techniques we actually do

see that the rate does actually begin to converge to the optimum.
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Chapter 5

Conclusions

“Enough research will tend to

support your conclusions.”

Arthur Bloch

5.1 How Should We Use Dropout Now?

We have seen then that when considering dropout in the context of approximate

variational inference in a Bayesian fitting of a neural network the dropout rate will

converge to a value p̂ ∈ (0, 1) or 0 or 1. Moreover it seems that when it converges

to 0 or 1 it is on its way to p̂ but is stopped by the boundary conditions on p.

We have also shown that 0 and 1 are not optimal from the point of view of the

ELBO and so if p is found to converge to one of these it may be worth restarting

training with a different value of p so that it goes to p̂. Indeed it would seem that

best practice would be too always start p at a value of 0.5, as far from 0 and 1

as possible, making it unlikely to converge to them. Alternatively employing a

technique from Section 4.2.7 may also work.

These findings challenge the common practice of simply setting p to 0.5,

though as can be seen from Fig. 5.1 the difference between the ELBOs reached
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5.1 How Should We Use Dropout Now?

Figure 5.1: Plots of the ELBO during training. Left: p starting at 0.37. Right:
p starting at 0.5.

between p at its optimal value and at 0.5 is not very much, especially considering

the inherent variance due to the Monte Carlo evaluation. Thus it seems 0.5 would

give a reasonable approximation, despite not being optimal, and so it is unsur-

prising that 0.5 is found to work quite well in practice. While our method is not

very computationally expensive, there would still be a saving in not optimising

p which could reasonably be traded for the slight decrease in ELBO by setting p

to 0.5.

Our work is not entirely conclusive though, for a start this has only been

implemented on a couple of different toy regression problems as well as classifi-

cation on the MNIST handwritten numbers data set (a common neural network

benchmark) so we cannot conclusively say that the rate will converge to some-

thing other than 0 or 1 in all situations. However that does not detract from

our method which would still stand and is applicable in any neural network ar-

chitecture where dropout can be applied and the likelihood of the data can be

calculated. It is also trivially extended to architectures of more than one hidden

layer (or indeed applied on the input layer) as the mathematics are independent

of the numbering of the layer, also allowing for different dropout rates between
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5.2 Further Research

layers. It could also be generalised to a different rate per individual neuron but

would certainly incur more of a computational cost.

5.2 Further Research

We have made the dropout approximation more flexible by using the rate as

another parameter to be optimised. This then naturally leads to other potential

ways to improve the flexibility of the distribution such as by not fixing the dropped

value to be zero. In other words taking a value a with probability p and a value b

with probability (1− p), where in normal dropout b = 0. Further extending this

to maybe a multinomial distribution could work, of course remembering though

that the more flexible the distribution the more computationally expensive it

becomes and one of the key advantages to dropout is its speed.

Further extensions to dropout have been proposed such as instead of multi-

plying the weights by B ∼ Bernoulli(p) we multiply them by some noise say

Z ∼ N(1, σ2), understanding this in the Bayesian context could be interesting

and seems like it might be closer than traditional dropout.

Of course this is all in the context of trying to fit Bayesian neural networks

both quickly and accurately. All the fast algorithms out there at the moment

rely on some pretty strict assumptions on the posterior distribution and so more

work on increasing their flexibility will be useful.

There are also a number or applications of Bayesian neural networks (and thus

our dropout method too) that it would be interesting to explore. For example

deep neural networks are used extensively in reinforcement learning, where accu-

rate evaluation of the uncertainty is very useful in order for the agent to decide

whether it should explore as opposed to exploit. If the agent has high uncertainty

over an action it may be useful to take that action so in the future it has a more
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5.3 Summary of Work

clear idea of how good that action is. Thus seeing how dropout can be used in

this context may be very useful.

5.3 Summary of Work

Now that we’ve reached the end of the project all that remains is to sum up all the

work that has been done and really detail what I’ve learned from the experience.

Over the course of the year I’ve learned and taught myself about machine

learning, and specifically deep neural network models. I’ve familiarised myself

with stochastic optimisation methods as well as modern methods in Bayesian

computation including Hamiltonian Monte Carlo and variational inference. I’ve

read through the literature on Bayesian deep learning, getting a good view on the

modern capabilities and limitations of the field, before looking at a specific prob-

lem - that of optimising the dropout rate. Here I took the original interpretation

of dropout as a Bayesian approximation and adapted it, making the variational

distribution more flexible by incorporating the dropout rate as a parameter of

that distribution to be optimised in training. Having derived the mathematics I

then implemented this in code.

Throughout the whole project I implemented most of the theoretical tech-

niques I encountered in code (see Appendix A). This not only improved by pro-

gramming skills but also gave me more of an understanding of the techniques and

allowed me to see how they really behave in practice, not just in theory.

This project has been a very useful and interesting exploration of a field I had

little knowledge of previously. It’s taught me a lot of technical knowledge as well

as developed my ability to do independent study and research, and for that I’m

very grateful.
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Appendix A

Programming Details

A significant part of this project involved programming, implementing the al-

gorithms that were looked at and producing graphics for the report. All code

was written in Python, open source package use was limited to only the more

general mathematical and scientific programming tool-kits. NumPy for general

mathematics, Matplotlib for plotting and Autograd for automatic differentiation.

This was for my benefit, I wanted to really know what the code was doing and

implementing these algorithms was a good way to test my understanding of them.

If you are interested I have uploaded the Python scripts directly used in the

production of this report into a Google drive folder (I was going to use GitHub

but that wouldn’t have been anonymous) which can be accessed by following this

link:

https://drive.google.com/open?id=1ve9Qh5DzDRC7TL3H7eSR39kjs6cpxItD

The folder contains the following files, and we detail where they are used:

GaussianProcesses.py : Fig. 2.4

MetHastings.py : Fig. 2.3

CoordinateAscent.py : Fig. 4.3

DropoutSingleLayer.py : Fig. 4.1
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DropoutRateOptim.py : Fig. 4.4, Fig. 4.5

BayesByBackprop.py : Fig. 4.1

GravesVI.py : Fig. 4.1

HMCNeuralNet.py : Fig. 4.1

Running the scripts will not always produce exactly the plots used in the

report since in some cases scripts were run multiple times with different values to

produce multiple plots. They have however been written so they can be run by

themselves in isolation to produce example plots. It’s worth emphasising these

are non-trivial algorithms and it took a significant amount of work to implement

and tune this code.
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