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Abstract

Machine learning models are being increasingly deployed to take, or assist in
taking, complicated and high-impact decisions, from quasi-autonomous vehicles to
clinical decision support systems. This poses challenges, particularly when models
have hard-to-detect failure modes and are able to take actions without oversight.
In order to handle this challenge, we propose a method for a collaborative system
that remains safe by having a human ultimately making decisions, while giving
the model the best opportunity to convince and debate them with interpretable
explanations. However, the most helpful explanation varies among individuals
and may be inconsistent across stated preferences. To this end we develop an
algorithm, Ardent, to efficiently learn a ranking through interaction and best assist
humans complete a task. By utilising a collaborative approach, we can ensure
safety and improve performance while addressing transparency and accountability
concerns. Ardent enables efficient and effective decision-making by adapting
to individual preferences for explanations, which we validate through extensive
simulations alongside a user study involving a challenging image classification
task, demonstrating consistent improvement over competing systems.

1 Introduction

Machine learning (ML) systems and human experts tend to exhibit distinct failure modes when
performing a task (Fails and Olsen Jr, 2003). In particular, while machine learning systems are often
more accurate and efficient than human experts - excelling at detecting subtle patterns that are not
obvious to people (Fujiyoshi et al., 2019) - they are prone to failure cases that are hard to detect
during training (Zhang et al., 2019; Liu et al., 2022), but can lead to obvious test-time mistakes
that human experts find trivially easy to correct (Yasaka et al., 2018). Combine these errors with a
high-stakes environment such as criminal justice or healthcare, and the result is an ML system that is
dangerous if deployed without oversight. The waters are muddied further by a lack of accountability
when part (or all) of the decision is made algorithmically, potentially creating mismatched incentives
between developers and end-users (Reed et al., 2016).

A natural solution to this problem is to have a human always be the one to make the decision, while
having access to the output of some machine learning model as a decision support tool. However, even
when implemented as support that only assists the users, the previous issues can prevent enthusiastic
adoption; people often feel like they cannot trust the output of black-box models without any case-
specific justification (Durán and Jongsma, 2021). Additionally, there is plenty of evidence that the
suggestions of the system may psychologically affect the human, shifting their preferences (Carroll
et al., 2022) and potentially manipulating them into taking decisions the system wants - which is
unsurprising given it happens to be their stated goal (Resnick and Varian, 1997).
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As such, what is needed are systems to guide the interaction between human and machine in order
to get the best out of each of them. In this work, we propose the development of a decision support
system that not only recommends actions, but also actively aims to provide the best possible evidence
supporting the credibility of the model’s recommendations in order to prevent accurate advice from
being dismissed by the human when the rationale behind the advice is not immediately clear. In order
to minimise the chance for manipulation, the type of arguments available to the system are limited to
explainability methods (Gilpin et al., 2018) that offer some insight into the black-box prediction to
the human (Kenny et al., 2021), making it easier to identify nonsensical predictions from the model.

Decision Support 
Model

Human Decision 
Maker

Protected 
Environment

Meta System

Figure 1: System Overview. When inter-
action with the environment could result in
great harm, we would like a system where
the human maintains control of actions. We
propose Ardent as a meta-system built around
any decision support model that selects what
types of explanations to provide in order to
convince the decision maker of its credibility
or highlight inaccuracies.
Table 1: Learning to Select Explanations.
How Ardent compares to other work that ex-
plores which explanations to use.

Work Goal Feedback Personalised

Lahav et al. (2018) Interpretability Trust Score ✓
Yeung et al. (2020) Interpretability Simulatability ✓

Wang and Yin (2021) Understanding Survey ✗

Ardent [US] Performance a only ✓

We measure the usefulness of explanations based on
the eventual agreement of the human with recom-
mended actions, without soliciting explicit feedback
from them as in previous work (Wang and Yin, 2021).
In doing so, we learn if an explanation is truly useful
enough to reveal new insight into a model and hence
prompt a change in one’s behaviour as opposed to
merely seeing how interpretable the explanation is
perceived to be. Attempts to learn which explanations
should be shown to people are summarised in Table
1, although in brief have included using Q-learning
to learn which explainers to select, but with a re-
ward based on their simulatability score (Yeung et al.,
2020). Lahav et al. (2018) on the other hand uses
UCB1, an algorithm designed for the standard bandit
problem (Auer et al., 2002), on a reported score from
users as to which explanation they trust the most. The
main point of divergence being that these are built
around a goal of learning which explanations are in-
terpretable - a goal that may not correlate with which
are most useful for performance - and as such make
use of alternative forms of feedback that may not be
appropriate for optimal performance.

Paper Roadmap. In what follows, we start in Sec-
tion 2 by developing a framework for meta-system
decision support - guiding the interaction between
human experts and machine learning support systems.
Based on this framework, we discuss a specific instan-
tiation and potential model of behaviour in Section 3
before presenting Ardent (adj. very enthusiastic or
passionate) in Section 4, a method for Argumentative
decision support. Ardent represents a machine learn-
ing meta-system, i.e. one that governs the interaction between a human and a decision support system
in order to optimise a task. Finally, in Section 5 we demonstrate empirically the benefits of Ardent
through a series of experiments. Here we validate in simulations how useful Ardent can be before
putting into practice with real human decision makers in an image classification example.

2 Meta-systems for Decision Support

In this section we will discuss at a high level the opportunities and challenges faced in building
decision support systems for safety-critical tasks. Consider an arbitrary task T that needs to be
completed by taking some action a ∈ A given a context x ∈ X . We consider the setting where
this is some safety-critical task, where ultimately the decision must come down to a human taking
actions according to some human-policy πhuman ∈ ∆(A)X . There are two important levels of
algorithmic support - we consider a decision support system to be a predictive model with some
support-policy πsupport ∈ ∆(A)X that is doing the same task as the human, operating on the same
domain as πhuman. On top of this, we consider a meta-system whose task is then essentially to govern
the interaction between the two lower-level policies πhuman and πsupport. This could conceivably
take many different forms - for example: occasionally using the human prediction to update the
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support model; encouraging the human to take the support system more seriously as this context
is one that humans often get wrong; or even flagging decisions for an external review. The overall
setup is modelled in Figure 1, the key aspect being that it is only ever the human decision maker
who is able to directly affect the environment. Of course, the support systems are able to influence it
indirectly (otherwise there would be no point in them), but the human is able to act as a screen to
prevent potentially dangerous actions being performed.
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Figure 2: Situations Faced by a Meta-
system: For each interaction, a meta-system
would like to determine which quadrant they
find themselves in - a very challenging task.

Identifying Who’s Correct. Similar to problems of
learning to defer (Mozannar and Sontag, 2020) or
switch between policies (Meresht et al., 2020), a key
role of the most general meta-policy is essentially to
detect who out of the human and support model is
making a correct prediction and who is not - resulting
in basically four possibilities as highlighted in Figure
2. We would expect the actions of the system to
be heavily dependent on the situation. For example,
if the system thinks they are in top right, where it
thinks the human is correct but the system may not
be, it might want to intervene to prevent the human
from being swayed by the prediction, for example by
highlighting that similar contexts were not common
in the support model’s training data. On the other
hand, if the system thinks they are in the top left,
where both the human and support policy is correct,
their job is significantly easier and there is no point
wasting time by offering extra justification or caveats.
That isn’t to say nothing can be done though, as the system could still use the incoming examples for
semi-supervision or for improved representation learning.

Debate Given Disagreement. In essence this gives rise to a debate between the human expert and the
support model - albeit one highly skewed towards the human given they are also the judge (the human
has no actual need to convince the support model). This can be seen to have a lot of benefits, with
debate allowing for better convergence to optimal actions between agents (Ehninger and Brockriede,
2008) and has been proposed itself as a framework for safe artificial intelligence (Irving et al., 2018).

Recommender Systems. A popular category of decision support can be classified as recommender
systems. However the typical use of these systems, especially used commercially (Shani et al.,
2005), relies on convincing the human to pick the option that the model wants (Pu et al., 2011). This
essentially assumes that πsupport strictly dominates πhuman and thus basically tries to alter πhuman to
converge to πsupport. In the case where humans are adding value this is highly undesirable, and can
have serious effects on the human preferences (Carroll et al., 2022) as a by-product. Further, recent
work by Vodrahalli et al. (2022) has even showed that miscalibration (in particular overconfidence) of
a machine learning model’s predictions resulted in humans being more likely to accept the suggested
actions. This raises questions about the ethics of deliberately inducing overconfidence in a model in a
high-stakes environment, making the model mislead the human in an effort to persuade them.

Understanding Human Decision Making. In order to best assist a human decision maker it can be
useful to model the decision making behaviour of the individual (Jarrett et al., 2021). This can involve
using imitation learning or inverse reinforcement learning to model their behaviour (Pace et al., 2021;
Chan and van der Schaar, 2021), or trajectory modelling if we believe their policy is updated over
time (Hüyük et al., 2022; Chan et al., 2021b). Once a model has been obtained, the support model can
be designed to specifically aid the shortcomings of the human policy. These often need simulations
to verify though (Chan et al., 2021a), and having a full model is not always necessary to improve the
whole system performance.

3 A Model of Human Behaviour

In this work, we will focus on a design of the meta-policy in a slightly more restricted setting,
proposing a method for when there is disagreement between policies (highlighted quadrants in Figure
2). We will often expect some disagreement, the support policy is unlikely to be adopted as the
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human expert’s policy outright, not least because it is most likely a black-box model and hence the
human might need to be persuaded of the target policy’s credibility. We refine the setting of Section 2
by considering that there is a set of post-hoc explainers E at our disposal. Given a context x and a
support-policy π, each explainer e ∈ E can output an explanation fe(x, π).

Our goal is to develop a meta-policy that simultaneously learns and selects (cf. explores and exploits)
the best explanations to show to the human that are maximally useful to them in order to make their
final decision. Suppose the human is wrong and the support-policy is right, these explainers should
be able to sufficiently justify their decision to the human so that they adopt the action. On the other
hand, if the support-policy is wrong but the human is right, the explainers should highlight that the
support model is making nonsensical predictions, encouraging the human to ignore it. We consider
an interaction loop between the human, support-policy, and meta-policy that goes as follows:

1. A new context x arrives.
2. The human expresses an intended action ahuman.
3. The support policy proposes the same or different action asupport ∼ πsupport(x).
4. The meta-policy provides a set of explanations fe(x, πsupport) that are given by explainers

e ∈ {e1, e2, . . .} in a specified order, as long as the agent keeps interacting.
5. The human ends the interaction and takes a final action a, which might not necessarily be

their intended ahuman nor the proposed asupport.

To be able to make meaningful inferences regarding how the system’s explanations have influenced
the human’s final action, we need to model how the human reasons about the information provided
by the explanations. In particular, we need to model (i) how they accumulate information as they see
multiple explanations one after another and (ii) how they then decide on a final action.

Given a context x, suppose the human considers there to be an optimal action a∗(x) to take but they
are not absolutely certain what that action might be. Their policy (i.e. the human policy πhuman)
reflects their initial belief regarding the optimal action—that is they believe a∗(x) = a to be the
case with a confidence of πhuman(x)[a]. We will denote this initial belief with b1 ∈ ∆(A) where
b1 = πhuman(x). The agent updates their belief as they gather more information by interacting with
the system. Formally, when they are provided with the t-th explanation fet(x, πsupport) by the t-th
explainer et, they update their belief such that:

bt+1[a] ∝ bt[a] · t · q[et, x, a] , (1)

where q[et, x, a] ∈ R+ can be interpreted as a measure of how likely the agent thinks they are to
see the information provided by explanation fet(x, πsupport) if a∗(x) = a were to be true—in other
words, q[e, x, a] ∝ P(fe(x, πsupport)|a∗(x) = a). Finally, when the agent ends the interaction with
the system after seeing the T -th and the final explanation, they take an action a according to their
final belief bT+1 such that a ∼ bT+1.

Objective. Our objective is to find a strategy to select explainers {e1, e2, . . .} given a context x ∈ X
and the agent’s intended action ahuman ∈ A according to data D = {(ahuman, a, e1:T )} collected
during previous interactions so that the number of times the proposed action is taken as the final
action (i.e. a = asupport) is maximised. We consider the case when propensities q ∈ RE×X×A

+ and
the human policy πhuman are unknown.

4 Argumentative Decision Support

Having established the forward model of behaviour we posited in the previous section, we now present
Ardent, a method for argumentative decision support. As an online learner, Ardent has to strike a
balance between two conflicting objectives: (i) infer how explanations affect the human’s beliefs
by trying out a variety of explanations (i.e. exploration), and (ii) help the human by showing them
only the best explanations (i.e. exploitation). To achieve this, we employ a variation of Thompson
sampling (Russo et al., 2018), a common method for online learning. For each interaction, Ardent
first forms a posterior P(q|x, e1:T , a) over unknown propensities given information from previous
interactions. Then, it selects explanations as if a particular sample q∗ ∼ P(q|x, e1:T , a) from the
formed posterior is the ground-truth propensities.
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Table 2: Multi-Armed Bandit Related Ideas. A comparison of how Ardent works placed in the
context of multi-armed bandits.

Problem Ref. Arms Feedback Type Feedback Model

Standard MAB Auer et al. (2002) Individual Bandit N/A
CMAB Chen et al. (2013) Combinatorial Semi-bandit Deterministic

Cascading bandits Kveton et al. (2015) Combinatorial Semi-bandit Cascading binary choices
CMAB-PTA Hüyük and Tekin (2019) Combinatorial Semi-bandit Possibly stochastic
MNL-Bandit Agrawal et al. (2019) Combinatorial Full-bandit Multinomial logit (MNL) choice

Ardent [US] Combinatorial Full-bandit Cascading MNL choices

Posterior Inference. Since Ardent is intended to be a lifelong learner, it needs to be able to form
posteriors over propensities without having to repeatedly retrain a system. This amounts to performing
Bayesian updates every time an interaction occurs given an appropriate starting prior.

Given a prior distribution P(q) over propensities q ∈ RE×X×A, the posterior distribution after
observing an interaction where the context is x, explainers e1:T are shown to the agent, and the agent
has taken the final action a can be expressed as:

P(q|x, e1:T , a) ∝ P(q)P(a|x, e1:T , q) = P(q)bT [a] = P(q)
b1[a]

∏
t∈[T ] t · q[et, x, a]∑

a′∈A

(
b1[a′]

∏
t∈[T ] t · q[et, x, a′]

) .

Algorithm 1: Ardent

Input: Prior distribution P(q) ∈ ∆(RE×X×A),
and discount factor α ∈ (0, 1)

∀i ∈ [N ], q(i) ∼ P(q)
∀i ∈ [N ], w(i) ← 1/N
loop
Interaction:

Context x ∈ X arrives
Determine action atarget ∼ πtarget(x)

k ∼ C(w(1:N)) ▷ Posterior sampling
repeat for t ∈ {1, 2, . . .}

et ← argmaxe∈E\{e1,...,et−1}
q(k)[e, x, atarget]

Show explanation fet(x, πtarget)
until the final action is taken
Observe the final action a ∈ A

Posterior update:
q̄ ←

∑
j∈[N ] w

(j)q(j)

Σ←
∑

j∈[N ] w
(j)(q(j) − q̄)(q(j) − q̄)T

∀i∈ [N ], µ(i)←αq(i) + (1− α)q̄
∀i∈ [N ], p(i)←w(i)P(a|x, e1:T , q=µ(i))
∀i∈ [N ], p(i)←p(i)/

∑
j∈[N ] p

(j)

for i ∈ {1, . . . , N} do
k ∼ C(p(1:N))
q(i) ∼ N (µ(k), (1− α2)Σ)
w(i) ← P(a|x, e1:T , q = q(i))

/P(a|x, e1:T , q = µ(k))
end for
∀i ∈ [N ], w(i) ← w(i)/

∑
j∈[N ] w

(j)

end loop

Note that it is not possible to keep an analyti-
cal track of this posterior, unlike typical appli-
cations of Thompson sampling. This is a di-
rect consequence of our feedback model; our
aims is to learn solely from the final action a
without relying on explicit feedback from the
human. For instance, if we were able to ob-
serve q[et, x, a]’s directly (perhaps by asking
the human to score each explanation numerically
or express their beliefs at each step explicitly),
we could have assumed P(q) is Gaussian and
trivially obtained P(q|x, e1:T , a). Rather than
keeping an analytical track of the posteriors, we
perform approximate posterior sampling using
a sequential Monte Carlo method instead. In
particular, building on the algorithm proposed
by Liu and West (2001) which outlines how to
track distributions over general static parame-
ters such as q. We represent distributions over
propensities q with particles {q(i)}i∈[N ] and
their corresponding weights {w(i)}i∈[N ] such
that w(i) ≥ 0,∀i ∈ [N ] and

∑
i∈[N ] w

(i) = 1.
Algorithm 1 describes in detail how these parti-
cles are updated. We denote with N (µ,Σ) the
Gaussian distribution with mean vector µ ∈ Rd

and covariance matrix Σ ∈ Rd×d, and with C(p)
the categorical distribution over {1, . . . , d} with
event probabilities p ∈ [0, 1]d.

Explanation Selection. Now at a new time-
step Ardent has a constructed posterior over the
human’s beliefs and given a new context and
support system prediction is tasked with select-
ing appropriate explainers to show to the human.
To do so, a particle is sampled from the poste-
rior distribution according to its relative weight (q(k) : k ∼ C(w(1:N)) in Algorithm 1). Then, the
explainers are shown to the human in order of their propensity—that is explainers with the largest
q(k)[e, x, atarget] are show first—as long as the human continues to request further explainers.
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Learning from Logged Feedback. While Ardent is primarily designed to run online, if there is
logged data available about the interaction of the human expert with the decision support tool previ-
ously - say collected when shown random explanations - this information can be easily incorporated
in order to build an informative prior for the propensities (for instance, by sampling initial particles
via Markov chain Monte Carlo methods) before Ardent is deployed.

Relationship to Multi-Armed Bandits. Ardent is a potential solution to a combinatorial multi-
armed bandit problem with full-bandit feedback, unlike those with semi-bandit feedback that have
been studied extensively. In our framework, semi-bandit feedback would correspond to observing
propensities {q[et, x, a]}t∈[T ] directly in addition to the final action a. Some work considers a special
case of full-bandit feedback where observations are dictated by a multinomial logit (MNL) choice
model. When all interactions involve only one explanation (i.e. T = 1), our observation model
becomes equivalent to theirs. Therefore, our framework could be considered as a generalisation
of theirs at least from a technical point of view, although conceptually the two frameworks aim to
solve completely different problems. Ardent can be thought of as a learning-to-rank problem as
our strategy essentially aims to order explanations based on propensities {q[e, x, asupport]}e∈E for
a given context x and a given action asupport. However, learning-to-rank problems are typically
formulated as problems with semi-bandit feedback—rather than full-bandit feedback—and do not
typically feature the complication of observations being dictated by a logistic model—as in our case.
A comparison on how similar systems to Ardent might be implemented using alternative bandit
frameworks is given in Table 2.

5 Experimental Demonstrations
Now that we have introduced Ardent as a meta-system for decision support, in this section we will
explore practically how it works and can be useful. We start by validating its efficacy on a simulated
synthetic scenario, before testing it on a real image classification task.
5.1 Validation with Synthetic Agents
Before we consider experiments involving real people making any decisions we will first validate
Ardent in a synthetic setting so as to confirm that it behaves as expected as well as examine the
effects of different variables on the performance of the system as a whole. To begin in the simplest
case, we will consider a scenario with binary contexts, binary actions, and a binary selection of
explanations available to Ardent. Since we focus on “high-stakes” environments, we might consider
a diagnostic setting, where patients either have some disease or not. There are two populations:
Patients with context x = 0 are usually healthy and do not need a treatment a∗(x = 0) = 0, and
patients with context x = 1 who are susceptible to the disease and consequently will require treatment
a∗(x = 1) = 1. Now, in this case the human expert clinician is able to make accurate decisions for
x = 0 (with high probability), specifically πhuman(x = 0)[a = 0] = 0.9, but is unable to do so for
x = 1; they effectively take random actions, specifically πhuman(x = 1)[a = 1] = 0.5. The machine
learning system on the other hand, is the opposite; they are accurate for x = 1 but decide randomly
for x = 0: πsupport(x = 1)[a = 1] = 0.9 and πsupport(x = 0)[a = 0] = 0.5. The clinicians believe
in their ability and cannot be persuaded of anything when they are certain of their decision (when
x = 0), and further only one of two potential explanations can persuade them to take action a = 1
when x = 1. Formally, E = {e−, e+} and q[e+, x = 1, a = 1] = 10 but q[·, ·, ·] = 1 otherwise.

System Performance. How do various systems fare at the task? We compare the following:

• Human - Alone: Only the human expert acting.
• Machine - Alone: Only the decision support acting.
• Human + Machine with Random Explanations: The human is shown the support prediction

with a random explanation and then makes a decision.
• Human + Machine with Oracle Explanations: The human is shown the decision support

system prediction along with the explanation an “Oracle” knows will convince them if
appropriate, and then makes a decision.

• Human + Machine with Ardent: The human is shown the decision support system prediction
along with an explanation chosen by Ardent, and then makes a decision.

The resultant accuracy for all systems is reported in Table 3. Ardent starts at, and maintains, an
optimal 90% accuracy for x = 0 as the human is able to always select the action they think is best.
For x = 1, Ardent starts at the same ability as random explanations (and above the human alone),
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Figure 3: Simulated Ablations. We demonstrate through simulation that a) Ardent is able to rapidly
converge on oracle performance. b) As dimensions increase convergence is slower but still very
quickly outperforms random explanations. c) Given the approximate nature of inference, the expected
error reduces with order of the log number of particles in the filter.

before rapidly overtaking the performance of the isolated decision support model and converging on
the oracle performance. The speed of convergence for Ardent to 95% in the setting where x = 1 can
be seen in Figure 3a. It takes minimal interaction until Ardent is able to select the correct explanation
reliably for a wide range in values of α. In conclusion: Ardent maintains the benefits of a human in
control while improving overall accuracy after minimal interaction.

Table 3: Accuracy. a→ b denotes a change from
a to b over time. Human+Machine with Ardent
eventually achieves the best possible accuracy for
both contexts.

Algorithm Accuracy
for x = 0

Accuracy
for x = 1

Human - Alone 90% 50%
Machine - Alone 50% 90%
H+M w/ Random Explanations 90% 75%
H+M w/ Oracle Explanations 90% 95%

H+M w/ Ardent 90% 75%→ 95%

Understanding Approximation Impact. We
consider a generalisation of the previous sim-
ulated example with E = 2, X = 3, A = 4,
where distributions are randomly sampled, with
unnormalised logits Normally distributed. As
discussed in Section 4, Ardent employs an ap-
proximate Bayesian method in the form of a
particle filter, and so considerations have to be
made as to how well this can actually track the
posterior and allow for accurate performance.
In Figure 3b we can track the accuracy under
individual particles as they are updated, as well
as the expected value and see that they rapidly outperform the random explanation baseline. In
Figure 3c we plot how the error reacts to the number of particles in the filter - a key hyperparameter
choice when it comes to sequential Monte Carlo methods. We can see that with too few particles
the approximation is too coarse and is unable to perform well at the task, although after about 1000
we can be confident in outperforming the baseline. There is of course a trade-off in that the more
particles that are simulated, the more that need to be tracked and the higher the computational burden
that comes with the increased fidelity. To summarise: Expected error reduces rapidly and with order
of the log number of particles in the filter.

5.2 Challenging Humans with Image Classification

Having validated Ardent in simulation, we now move on to one example of how this could be
used in practice by human decision makes to complete a task, albeit tested in a slightly lower-
stakes environment than we describe previously. CIFAR-10 has been a very common multi-class
classification benchmark in the computer vision community (Krizhevsky et al., 2009), although
recently has been largely set aside for bigger and higher resolution image datasets. However, it is the
low resolution of CIFAR-10 that makes it a particularly appropriate task for our purposes, as it can
still pose a challenge for human labellers, and deep neural networks can achieve very strong accuracy
(Dosovitskiy et al., 2021). The CIFAR-10 test set contains 10,000 images, although many of them are
trivially easy for both humans and machine learning systems. As such, we construct a more curated
test set of only 70 images while over-representing test examples that humans have trouble identifying
and deep networks commonly make mistakes on. In this case the overall performance of both humans
and machine on this subset is significantly lower than what might be achieved over the full test set.
This is important for increasing the number of examples for which there is disagreement between
human and machine, better representing the type of tasks we expect Ardent to be useful on. Details
of presentation and test-set specifics are given in the supplementary materials. In total, we recruited
32 participants and received approval from our department’s Ethics Committee (IRB equivalent),
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Figure 4: Example Image and Explanations. Subjects are shown a new test image as in the top
left, and asked to make a prediction. The system then shows them the model prediction, in this case
‘Truck’, and as long as the subject remains unconvinced, continues to show them new explanations -
examples of which are shown here. Details of exact presentation is given in the Appendix.

following standard data collection protocols. Risk was deemed to be low given the task nature and
non-identifiable information collected. Participants were volunteers sought from our institution.

In order to test the ability of Ardent to optimise performance and discover which explainability
methods are preferred by different people we use five different explainability methods that fall in
three different categories. This allows for reasonable heterogeneity between explanations, not having
them all basically report the same thing. To that end, we employ: 1) Feature Importance Methods:
Those that aim to highlight which part of the context was useful for the model in making a decision. In
particular we use Integrated Gradients (Sundararajan et al., 2017) - A method for attributing features
to a model’s predictions while satisfying definitions of sensitivity and implementation invariance;
and DeepLIFT (Shrikumar et al., 2017) - Deep Learning Important Features aims to decompose
the prediction into attributions of individual neurons and comparing to a reference attribution to
determine feature relevance. 2) Example Based Methods: Those that aim to justify the model’s
prediction by showing other example(s) from a corpus (often the training set) that are in someway
similar to the test example including SimplEx (Crabbé et al., 2021) - that provides relevant examples
by reconstructing a test example’s latent representation as a mixture of the corpus representations;
and Nearest-Neighbour (Wallace et al., 2018) - that provides the example and model prediction of
the corpus member closest to the test example in the model latent space. 3) Counterfactual Methods:
Those that ask a question of the model as to what might the predicition be if the context had of been
different, in this case Occlusion Maps (Zhang et al., 1997) that searches for the minimal mask that
will result in a different prediction being outputted by the model. An example of the test images and
accompanying examples shown to human experts is shown in Figure 4 - note this is not how they
are presented during the task, where one explanation would be shown at a time - the actual display
shown to participants is detailed in the appendix. As one can see, all of the different methods offer
different information about the decision support model’s prediction and so can be useful to different
people in different ways, it is very much a subjective position as to which one may be more useful.

Ability to Accurately Classify Images. All participants were randomly allocated to one of three arms
in the trial. These included: 1) being shown explanations chosen by Ardent; 2) being shown randomly
ordered explanations; and 3) being shown only the explanation that the participant selected as their
favourite at the beginning of the experiment when shown the an example of how the explanations
work. The results for final accuracy on the test set are reported in Table 4, where the estimate of the
Human - Alone accuracy is calculated from the initial prediction of participants across all arms. We
can see that Ardent significantly outperforms both of the individual (human or AI) systems as well as
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beating the combinations given access to randomly ordered explanations or the explanation chosen
a priori by the participant as their favourite. The differences in mean performance are statistically
significant with a standard test rejecting a null hypothesis of equality with a p value < 0.01. The
gap shows that Ardent allows for a more nuanced collaboration between human and AI such that the
humans can really take advantage of a predictor that actually has a lower accuracy on average than
them, which may not be an obvious point when people evaluate the potential use of a decision support
system. The fact that Ardent outperforms random explanations provides evidence that a choice of
explanations is important for people, and certainly validates that they can be very useful for giving
them insight into a model’s predictions. In the end: Ardent improves overall system performance by
enabling useful human-AI collaboration.

Table 4: Accuracy. We report the mean accuracy
(95% confidence interval) on a challenging subset
of the CIFAR-10 image classification test set.

Algorithm Accuracy
Human - Alone 72.5± 6.2%
Machine - Alone 50.0± 0.0%
H+M w/ Random Explanations 76.1± 3.8%
H+M w/ a priori Favourite 75.7± 4.0%

H+M w/ Ardent 83.4± 5.0%
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Figure 6: Preference Inference. We can see that
Ardent quickly identifies that this participant found
that example-based explanations were most useful
for them.

Explanation Efficiency. By running posterior
updates, Ardent incurs a computational cost,
however this is not as large an issue as it may
originally seem. Given the more targeted ex-
plainer selection from Ardent, users actually
click through 31.4% fewer explanations on av-
erage, which saves on the computational cost of
generating these explanations - which in some
cases can require multiple passes through a net-
work, potentially more than offsetting the cost
of Ardent updates. Figure 5 shows more clearly
how the average number of explanations viewed
decreases over time with Ardent, increasing the
efficiency. Interestingly, they also decrease for
the Random group - given that there is no change
in the way explanations are presented here, it ap-
pears that the main reason for this would be that
the participants begin to fatigue of the task and
are less inclined to click through explanations. It
takes time to view, evaluate, and properly draw
conclusions from an explanation and humans
get less engaged as tasks go on, especially if
they are repetitive. It is this aspect that Ardent
aims to handle by producing a relative ordering.
Ardent is then able to provide the most useful
explanations first in order to engage the partic-
ipant, but also is still able to offer alternative
explanations when they are needed. Targeted ex-
planations can result in computational savings
and decrease fatigue.

Preference Identification. In addition to the
ability to optimise performance, Ardent obtains
a ranking of which explainers users seem to find
most useful - the ones that actually impact the
behaviour of the human. Figure 6 demonstrates
the trajectory of an example user. It can be seen
that in the beginning the selection of explainers
is relatively random, as Ardent starts to learn
which explainers are useful the ordering entropy
decreases - Ardent identifies that this user finds
the example-based methods most informative.
Importantly, Ardent outperforms the baseline arm that gives the participant the explanation that they
a priori thought would be the most useful. This emphasises how the impact of explainability is not as
simple as a qualitative analysis of a method, and that what we think may be useful may not actually
lead to significant change in the way that people come to decisions. Ardent efficiently identifies
individual preferences, potentially better than the individuals themselves.
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6 Discussion
In this work we introduced Ardent, an approach for optimal human-AI collaboration. Here we
focus on high stakes settings where it is important for humans to remain in control while giving the
support systems opportunities to convince them to pay attention when appropriate - this is validated
through simulation as well as a study on image classification. Ardent offers a solution when there is
disagreement between the human and the decision support system, but does implicitly assume that at
least one of them is correct. There are still many interesting directions that can be taken, especially
building around a system like Ardent using semi/self-supervised learning to understand when/where
both policies fail. There are many ways support systems can empower human decision makers and we
by no means expect Ardent to be the only component in a fully deployed meta-system. Our hope is
that Ardent will encourage and support the development of machine learning methods that work with
people to provide the best of both worlds while remaining safe to deploy in challenging scenarios.
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A Experimental Setup
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Figure 7: Experimental presentation to participants. Subjects are shown a new test image, and
asked to make a prediction. The system then shows them the model prediction, in this case ‘Frog’,
and as long as the subject remains unconvinced, continues to show them new explanations - here the
user is being shown the nearest neighbour from the training set in latent space, which is a frog, and
this has convinced the participant that the prediction might be right, despite previously thinking the
image was of a ginger cat.

A.1 Graphical User Interface

The task is presented to the participants as in Figure 7, made up of the individual components that
allow for interaction explained here:

1. The test image that the participant is asked to classify.

2. The participant is asked to select their first choice as to which is the correct classification. 3
would not be revealed at this point.

3. Explanations appear in the top right as requested by the participant - here is shown an
example of the nearest neighbour to the test example.

4. While the participant remains unconvinced they can move to the next explanation by clicking
this button.

5. If and when the participant decides to change their answer they make a second selection
here.

6. The participant can end the interaction by pressing this button which takes them to the next
example.

The 70 test-set indices used for construction of the task were: { 5, 15, 32, 33, 34, 46, 61, 65, 68, 74,
84, 86, 91, 100, 111, 115, 121, 126, 130, 134, 146, 163, 165, 169, 170, 183, 184, 187, 206, 223, 224,
228, 246, 248, 250, 254, 264, 266, 271, 275, 305, 309, 312, 313, 322, 323, 324, 340, 346, 356, 367,
385, 394, 418, 421, 426, 428, 439, 470, 481, 483, 493, 502, 511, 522, 531, 549, 572, 586, 610}
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A.2 Participant Instructions

Before completing the task, participants are shown the following information:

1. Introduction

You are invited to participate in a research study that aims to understand how machine learning
methods affect human performance on image classification tasks. Before you decide to participate, it
is important that you understand why the research is being conducted and what it will involve. Please
take time to read the following information carefully.

2. Purpose of the Study

The purpose of this study is to investigate the effects of machine learning techniques on human
performance in image classification tasks. We are interested in understanding how these methods can
enhance or impact your ability to classify images accurately.

3. What Data Will Be Collected

During this study, we will collect data related to your performance in the image classification tasks,
such as accuracy and response time. We will also gather basic demographic information such as age
and gender. Please note that no sensitive data will be collected.

4. How the Data Will Be Used

The data collected will be used to assess the effectiveness of machine learning methods in enhancing
human performance on the image classification task. The aggregated results may be published in
academic journals, conference presentations, and technical reports. Individual responses will not be
identifiable in any published or presented data.

5. How the Data Will Be Stored and for How Long

All data collected during the study will be securely stored in an encrypted format on secure servers.
Data will be retained for a period of five years after the conclusion of the study, as required by our
data retention policy, after which it will be securely deleted.

6. Anonymity of Responses

Your participation in this study will remain anonymous, using the randomised ID that has been
assigned to you. No personally identifiable information will be associated with your responses in any
reports of this research. The data will be presented in aggregate form.

7. Data Sharing with Other Researchers

Anonymised, aggregated data may be made available to other researchers online at some point. Again,
individual responses will not be identifiable.

8. Withdrawal of Consent and Data

You have the right to withdraw from the study at any time. If you choose to withdraw, all data
associated with your participation will be deleted. To withdraw your consent and data, please contact
[Redacted for double-blind review] via email.

9. Legal Framework

Your data will be handled according to the principles and rules set by the General Data Protection
Regulation (GDPR).

10. Consent

Please confirm that you have read and understand the above information relating to your participation
in this research study. By clicking the box below, you confirm that you:

• Understand the nature and purpose of the study.

• Agree to the collection, use, and storage of your data as described above.

• Understand that your participation is voluntary and you may withdraw at any time without
penalty.

• I agree to participate in this study
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B Alternate Uses

Ardent for Education? By trying to find convincing explanations of the machine learning system,
it could be thought that Ardent represents a method for education of the human expert. While a
byproduct of the system may be that the human learns something when shown predictions and
explanations in certain contexts, it would be wrong to equate this to typical education methods Luan
and Tsai (2021). The setting in education is essentially to assume that πsupport is the correct policy
and thus try to minimise some divergence between the human and machine by influencing them in
some way Korkmaz and Correia (2019). This overlooks the case when the human is correct and the
system is not, which as we establish is a very important aspect when it comes to the safety of any
deployed system. Ardent can be seen as taking the education-based approach to trying to determine
the use of explainers. We determine if they were beneficial by measuring performance on the task -
in the same way students are tested on their knowledge, not just asked the yes/no question of if they
learnt something.
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